The decNumber C library

Version 2.00 — 4th December 2001

Mike Cowlishaw

IBM Fellow
IBM UK Laboratories
mfc@uk.ibm.com

Table of Contents

Overview 1

User’s Guide 3
Example 1 — simple addition 4
Example 2 — compound interest 5
Example 3 — passive error handling 6
Example 4 — active error handling 7
Example 5 — decSingle and decDouble 9
Example 6 — Packed Decimal numbers 11

Module descriptions 12
decContext module 13
Definitions 14
Functions 15
decNumber module 18
Definitions 20
Functions 22
Conversion functions 22
Arithmetic functions 24
Utility functions 26
decSingle module 28
Definitions 28
Functions 29
decDouble module 31
Definitions 31
Functions 31
decPacked module 35
Definitions 35
Functions 36

Appendix - Changes 38

Index 39

Version 2.00

Overview

The decNumber library is an implementation of Standard Decimal Arithmetic! (both
the base and extended specifications), written in ANSI C. Standard Decimal Arithmetic is
a specification for decimal arithmetic which meets the requirements of commercial,
financial, and human-oriented applications while conforming to the relevant ANSI? and
IEEE® standards.

The library fully implements the specifications,* and hence supports integer, fixed-point,
and floating-point decimal numbers directly, together with infinities and NaN (Not a
Number) values.

The code is optimized and tunable for common values (tens of digits) but can be used
without alteration for up to a billion digits of precision and 9-digit exponents. It also
provides functions for conversions between concrete representations of decimal numbers,
including Packed Decimal (4-bit Binary Coded Decimal), single length decimal floating-
point (8-byte), and double length decimal floating-point (16-byte).

Library modules

The library comprises several modules (corresponding to classes in an object-oriented
implementation). Each module has a header file (for example, decNumber.h) which
defines its data structure, and a source file of the same name (e.g., decNumber.c) which
implements the operations on that data structure. These correspond to the instance
variables and methods of an object-oriented design.

The core of the library is the decNumber module. This uses a decimal number represen-
tation designed for efficient computation in software and implements the arithmetic
operations, together with some conversions and utilities. Once a number is held as a
decNumber, no further conversions are necessary.

Most functions in the decNumber module take as an argument a decContext structure,
which provides the context for operations (precision, rounding mode, etc.) and also con-
trols the handling of exceptional conditions (corresponding to the flags and trap enablers
in a hardware floating-point implementation).

1 See http://www2.hursley.ibm.com/decimal for details.

2 American National Standard for Information Technology — Programming Language REXX, X3.274-1996,
American National Standards Institute, New York, 1996.

3 IEEE 854-1987 — IEEE Standard for Radix-Independent Floating-Point Arithmetic, The Institute of
Electrical and Electronics Engineers, Inc., New York, 1987.

4 Except for one missing function, square root, which will be added later if time permits.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 1

The decNumber representation is machine-dependent (for example, it contains integers
which may be big-endian or little-endian), and is optimized for speed rather than storage
efficiency. Three machine-independent and more compact storage formats are therefore
provided for interchange. These are:

decSingle This is a “single precision” decimal floating-point representation, where each
number is stored in 8 bytes. It provides 15 decimal digits of precision and 3
of exponent, in a format similar to that defined in IEEE 754-1985.5

decDouble This is a “double precision” decimal floating-point representation, where each
number is stored in 16 bytes. It provides 33 decimal digits of precision and
4 of exponent, also similar to IEEE 754-1985.

decPacked The decPacked format is the classic packed decimal format implemented by
IBM S/360 and later machines, where each digit is encoded as a 4-bit binary
sequence (BCD) and a number is ended by a 4-bit sign indicator. The
decPacked module accepts variable lengths, allowing for very large numbers
(up to a billion digits), and also allows the specification of a scale.

The module for each format provides conversions to and from the core decNumber format.
The decSingle and decDouble modules also provide conversions to and from character
string format (using the functions in the decNumber module). Conversions between the
decSingle and decDouble formats are also included.

Standards compliance
It is intended that the decNumber implementation complies with:

« the floating-point decimal arithmetic defined in ANSI X3.274-1996 (including errata
through 2001)

< all requirements of IEEE 854-1987 except that:

1. The values returned after overflow and underflow do not change when an
exception is trapped. This is because of the difficulty of making this thread-
safe, and also because the IEEE 854 definition does not generalize to the power
operator.

2. The IEEE remainder operator (decNumberRemainderNear) is restricted to
those values where the intermediate integer can be represented in the current
precision, because the conventional implementation of this operator would be
very long-running for the range of numbers supported (up to 1101’000'000’000).

3. The string representations of NaN are "Nan" and "sNaN" (as proposed in the
current IEEE review), rather than just "Nan" with an optional sign.

4. One required function is missing (square root) — it is intended that this will be
added later, as time permits.

Note that all other requirements of IEEE 854 (such as subnormal numbers and -0)
are supported.

Please advise the author of any discrepancies with these standards.

5 ANSVI/IEEE 754-1985 — IEEE Standard for Binary Floating-Point Arithmetic, The Institute of Electrical
and Electronics Engineers, Inc., New York, 1985.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 2

User’'s Guide

To use the decNumber library efficiently it is best to first convert the numbers you are
working with from their coded representation into decNumber format, then carry out
calculations on them, and finally convert them back into the desired coded format.

Conversions to and from the decNumber format are fast; only the simplest calculations
(x=x+1, for example) are faster. Therefore, in general, the cost of conversions is small
compared to that of calculation.

The coded formats currently provided for in the library are

< strings (ASCII bytes, terminated by '\o', as usual for C)
= single and double precision floating-point decimals

e Packed Decimal numbers with optional scale.

The remainder of this section illustrates the use of these coded formats in conjunction
with the core decContext and decNumber modules by means of examples.

Notes on running the examples

1. All the examples are written conforming to ANSI C, except that they use “line com-
ment” notation (comments starting with //) from BCPL and C++ for more concise
commentary. Most C compilers support this; if not, a short script can be used to
convert the line comments to traditional block comments (/* ... */).

2. One aspect of the examples is implementation-defined. It is assumed that the
default handling of the SIGFPE signal is to end the program. If your implementa-
tion ignores this signal, the lines with set.traps=0; would not be needed in the
simpler examples.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 3

Example 1 - simple addition

This example is a simple test program which can easily be extended to demonstrate more
complicated operations or to experiment with the functions available.

1. // examplel.c —-- convert the first two argument words to decNumber,
2. // add them together, and display the result

3.

4. #define DECNUMDIGITS 38 // work with up to 38 digits
5. #include "decNumber.h" // base number library

6. #include <stdio.h> // for printf

7.

8. int main(int argc, char *argvI[]) {

9. decNumber a, b; // working numbers

10. decContext set; // working context

11. char string[DECNUMDIGITS+14] ; // conversion buffer

12.

13. if (argc<3) { // not enough words

N
»

printf ("Please supply two numbers to add.\n");

return 1;
decContextDefault (&set, DEC_INIT BASE); // initialize
set.traps=0; // no traps, thank you
set.digits=DECNUMDIGITS; // set precision

NN P B R
P O © o N O O

decNumberFromString (&a, argv[l], &set);
decNumberFromString (&b, argv[2], &set);

NN
w N

decNumberAdd (&a, &a, &b, &set); // a=a+b
24. decNumberToString(&a, string) ;
25. printf ("%$s + %s => %s\n", argv[l], argv[2], string);
26. return O;
27. } // main

This example is a complete, runnable program. In later examples we'll leave out some
of the “boilerplate”, checking, etc., but this one should compile and be usable as it stands.

Lines 1 and 2 document the purpose of the program.

Line 4 sets the maximum precision of decNumbers to be used by the program, which is
used by the embedded header file in line 5 (and also elsewhere in this program).

Line 6 includes the C library for input and output, so we can use the printf function.
Lines 8 through 11 start the main function, and declare the variables we will use. Lines
13 through 16 check that enough argument words have been given to the program.

Lines 17-19 initialize the decContext structure, turn off error signals, and set the work-
ing precision to the maximum possible for the size of decNumbers we have declared.

Lines 21 and 22 convert the first two argument words into numbers; these are then added
together in line 23, converted back to a string in line 24, and displayed in line 25.

Note that there is no error checking of the arguments in this example, so the result will
be nan (Not a Number) if one or both words is not a number. Error checking is introduced
in Example 3 (see page 6).

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 4

Example 2 - compound interest

This example takes three parameters (initial amount, interest rate, and number of years)
and calculates the final accumulated investment. For example:

100000 at 6.5% for 20 years => 352364.51

The heart of the program is:

1. decNumber one, mtwo, hundred; // constants

2. decNumber start, rate, years; // parameters

3. decNumber total; // result

4. decContext set; // working context
5. char string[DECNUMDIGITS+14] ; // conversion buffer
6.

7. decContextDefault (&set, DEC INIT BASE) ; // initialize

8. set.traps=0; // no traps

9. set.digits=25; // precision 25

10. decNumberFromString (&one, "ln, &set) ; // set constants
11. decNumberFromString (&mtwo, n_2m, &set);

i
Nk

decNumberFromString (&hundred, "100", &set);

-
w

14. decNumberFromString(&start, argv[l], &set); // parameter words
15. decNumberFromString(&rate, argv[2], &set);

16. decNumberFromString(&years, argv[3], &set);

17.

18. decNumberDivide (&rate, &rate, &hundred, &set); // rate=rate/100

19. decNumberAdd (&rate, &rate, &one, &set); // rate=rate+l

20. decNumberPower (&rate, &rate, &years, &set); // rate=rate**years
21. decNumberMultiply (&total, &rate, &start, &set); // total=rate*start
22. decNumberRescale (&total, &total, &mtwo, &set); // two digits please

NN
> w

decNumberToString (&total, string) ;

printf ("%$s at %s%% for %s years => %$s\n",
argv[1l], argv[2], argv[3], string);

return 0;

NN
N o g

These lines would replace the content of the main function in Example 1 (adding the
check for the number of parameters would be advisable).

As in Example 1, the variables to be used are first declared and initialized (lines 1
through 12), with the working precision being set to 25 in this case. The parameter words
are converted into decNumbers in lines 14-16.

The next four function calls calculate the result; first the rate is changed from a per-
centage (e.g., 6.5) to a per annum rate (1.065). This is then raised to the power of the
number of years (which must be a whole number), giving the rate over the total period.
This rate is then multiplied by the initial investment to give the result.

Next (line 22) the result is rescaled so it will have only two digits after the decimal point
(an exponent of -2), and finally (lines 24—-26) it is converted to a string and displayed.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 5

Example 3 - passive error handling

Neither of the previous examples provide any protection against invalid numbers being
passed to the programs, or against calculation errors such as overflow. If errors occur,
therefore, the final result will probably be nan or infinite (decNumber result structures
are always valid after an operation, but their value may not be useful).

One way to check for errors would be to check the status field of the decContext structure
after every decNumber function call. However, as that field accumulates errors until
cleared deliberately it is often more convenient and more efficient to delay the check until
after a sequence is complete.

This passive checking is easily added to Example 2. Replace lines 14 through 22 in that
example with (the original lines repeated here are unchanged):

1. decNumberFromString(&start, argv[l], &set); // parameter words
2. decNumberFromString (&rate, argv[2], &set);

3. decNumberFromString (&years, argv[3], &set);

4. if (set.status) {

5. printf ("An input argument word was invalid [%s]\n",

6. decContextStatusToString (&set)) ;

7. return 1;

8. }

9. decNumberDivide (&rate, &rate, &hundred, &set); // rate=rate/100

10. decNumberAdd (&rate, &rate, &one, &set); // rate=rate+l

11. decNumberPower (&rate, &rate, &years, &set); // rate=rate**years
12. decNumberMultiply (&total, &rate, &start, &set); // total=rate*start
13. decNumberRescale (&total, &total, &mtwo, &set); // two digits please
14. if (set.status & DEC_Errors) ({

15. set.status &= DEC_Errors; // keep only errors
16. printf ("Result could not be calculated [%s]\n",

17. decContextStatusToString (&set)) ;

18. return 1;

19. }

Here, in the if statement starting on line 4, the error message is displayed if the status
field of the set structure is non-zero. The call to decContextStatusToString in line 6
returns a string which describes a set status bit (probably “conversion syntax”).

In line 14, the test is augmented by anding the set.status value with DEC_Errors. This
ensures that only serious conditions trigger the message. In this case, it is possible that
the DEC_Inexact and DEC_Rounded conditions will be set (if an overflow occurred) so these
are cleared in line 15.

With these changes, messages are displayed and the main function ended if either a bad
input parameter word was found (for example, try passing a non-numeric word) or if the
calculation could not be completed (e.g., try a value for the third argument which is not
an integer).®

6 Of course, in a user-friendly application, more detailed and specific error messages are appropriate. But
here we are demonstrating error handling, not user interfaces.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 6

Example 4 - active error handling

The last example handled errors passively, by testing the context status field directly. In
this example, the C signal mechanism is used to handle traps which are raised when
errors occur.

When one of the decNumber functions sets a bit in the context status, the bit is compared
with the corresponding bit in the traps field. If that bit is set (is 1) then a C Floating-Point
Exception signal (sIGFPE) is raised. At that point, a signal handler function (previously
identified to the C runtime) is called.

The signal handler function can either simply log or report the trap and then return (and
execution will continue as though the trap had not occurred) or — as in this example — it
can call the C 1ongjmp function to jump to a previously preserved point of execution.

Note that if a jump is used, control will not return to the code which called the
decNumber function that raised the trap, and so care must be taken to ensure that any
resources in use (such as allocated memory) are cleaned up appropriately.

To create this example, modify the Example 1 code this time, by first removing line 18
(set.traps=0;). This will leave the traps field with its default setting, which has all the
DEC_Errors bits set, hence enabling traps for any of those conditions. Then insert after
line 6 (before the main function):

1. #include <signal.h> // signal handling

2. #include <setjmp.h> // setjmp/longjmp

3.

4. jmp_buf preserve; // stack snapshot

5,

6. void signalHandler (int sig) {

7. signal (SIGFPE, signalHandler) ; // re-enable

8. longjmp (preserve, sig); // branch to preserved point
9.

Here, lines 1 and 2 include definitions for the C library functions we will use. Line 4
declares a global buffer (accessible to both the main function and the signal handler)
which is used to preserve the point of execution to which we will jump after handling the
signal.

Lines 6 through 9 are the signal handler. Line 7 re-enables the signal handler, as
described below (in this example this is in fact unnecessary as we will be ending the
program immediately). This is normally needed as handlers are disabled on entry, and
need to be re-enabled if more than one trap is to be handled.

Line 8 jumps to the point preserved when the program starts up (in the next code insert).
The value, sig, which the signal handler receives is passed to the preserved code. In this
example, sig always has the value s1GFPE, but in a more complicated program the same
signal handler could be used to handle other signals, too.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 7

The next segment of code is inserted after line 11 of Example 1 (just after the existing
declarations):

1. int value; // work variable

2.

3. signal (SIGFPE, signalHandler) ; // set up signal handler

4. value=setjmp (preserve) ; // preserve and test environment
5. if (value) { // (non-0 after longjmp)

6. set.status &= DEC_Errors; // keep only errors

7 printf ("Signal trapped [%s].\n", decContextStatusToString(&set)) ;
8. return 2;

o}

Here, a work variable is declared in line 1 and the signal handler function is registered
(identified to the C run time) in line 3. The call to the signal function identifies the
signal to be handled (s1GrpE) and the function (signalHandler) that will be called when
the signal is raised, and enables the handler.

Next, in line 4, the setjmp function is called. On its first call, this saves the current point
of execution into the preserve variable and then returns 0. The following lines (5-8) are
then not executed and execution of the main function continues as before.

If a trap later occurs (for example, if one of the arguments is not a number) then the
following takes place:

the s1cFpE signal is raised by the decNumber library

2. the signalHandler function is called by the C run time with argument SIGFPE
3. the function re-enables the signal, and then calls 1ongjmp
4. this in turn causes the execution stack to be “unwound” to the point which was

preserved in the initial call to setjmp

5. the setjmp function then returns, with the (non-0) value passed to it in the call to
longjmp

6. the test in line 5 then succeeds, so line 6 clears any informational status bits in the
status field in the context structure which was given to the decNumber routines and
line 7 displays a message, using the same structure

7. finally, in line 8, the main function is ended by the return statement.

Of course, different behaviors are possible both in the signal handler, as already noted,
and after the jump; the main program could prompt for new values for the input
parameters and then continue as before, for example.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 8

Example 5 - decSingle and decDouble

The previous examples all used decNumber structures directly, but that format is not
necessarily compact and is machine-dependent. These attributes are generally good for
performance, but are less suitable for the storage and exchange of numbers.

The decSingle (see page 28) and decDouble (see page 31) forms are provided as efficient,
machine-independent formats used for storing numbers of up to 15 or 33 decimal digits
respectively, in 8 or 16 bytes. These formats are very similar to, and are used in the same
manner as, the C float and double data types.

Here's an example program. Like Example 1, this is runnable as it stands, although it's
recommended that at least the argument count check be added.

1. // example5.c -- decSingle conversion and square

2. #include "decSingle.h" // decSingle and number library
3. #include <stdio.h> // for (s)printf

4,

5. int main(int argc, char *argvI[]) {

6. decSingle a; // working decSingle number
7. decNumber d; // working number

8. decContext set; // working context

9. char string[DECSINGLE String] ; // number->string buffer

10. char hexes[25]; // single->hex buffer

11 int 1i; // counter

B
W Nt

decContextDefault (&set, DEC_INIT SINGLE); // initialize

e
a &

decSingleFromString (&a, argv([l], &set);
// lay out the single as eight hexadecimal pairs
for (i=0; 1i<8; i++) {

B
N o

18. sprintf (&hexes [i*3], "%02x ", a.bytes[i]);

19. }

20. decSingleToNumber (&a, &d) ;

21. decNumberMultiply(&d, &d, &d, &set); // square it

22. decNumberToString (&d, string) ;

23. printf ("%$s => %$s=> %s (squared)\n", argv[l], hexes, string);

)
»

return 0;
} // main

N
@

Here, the #include on line 2 not only defines the decSingle type, but also includes the
decNumber and decContext header files. Also, if DECNUMDIGITS (see page 19) has not
already been defined, the decsingle.h file sets it to 15 so that any decNumbers declared
will be exactly the right size to take any decSingle without overflow.

The declarations in lines 6-11 create three working structures and other work variables;
the decContext structure is initialized in line 13 (set.traps is 0).

Line 15 converts the input argument word to a decSingle (with a function call very sim-
ilar to decNumberFromString). Note that a DEC_Conversion overflow would occur if the
number needed more than 15 digits of precision.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 9

Lines 16-19 lay out the decSingle as eight hexadecimal pairs in a string, so that its
encoding can be displayed.

Lines 20-22 show how decSingles are used. First the decSingle is converted to a
decNumber, then arithmetic is carried out, and finally the decNumber is converted back
to some standard form (in this case a string, so it can be displayed in line 23). For
example, if the input argument were “79”, the following would be displayed:

79 => 3f £0 00 00 00 00 00 79 => 6241 (squared)

The decDouble form is used in exactly the same way, for working with up to 33 digits of
precision. In this case, only decbouble.h need be included, as this in turn includes
decSingle.h.

The decDouble type has the same constants and functions as decSingle (with the obvious
name changes) and, in addition, provides conversions between the decSingle and
decDouble types.

Like decsingle.h, the decDouble header file defines the bprEcNUMDIGITS (Ssee page 19)
constant if it has not already been defined, in this case to 33 (the maximum precision a
decDouble can encode).

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 10

Example 6 - Packed Decimal numbers

This example reworks Example 2, starting and ending with Packed Decimal numbers.
First, lines 4 and 5 of Example 1 (which Example 2 modifies) are replaced by the line:

1. #include "decPacked.h"

Then the following declarations are added to the main function:

1. uByte startpack[]={0x01, 0x00, 0x00, 0x0C}; // investment=100000
2. Int startscale=0;

3. uByte ratepack[]={0x06, 0x5C}; // rate=6.5%

4. Int ratescale=1;

5. uByte yearspack[]={0x02, 0x0C}; // years=20

6. Int yearsscale=0;

7. uByte respack[16]; // result, packed

8. Int resscale; // ..

9. char hexes[49]; // for packed->hex
10. int i; // counter

The first three pairs declare and initialize the three parameters, with a Packed Decimal
byte array and associated scale for each. In practice these might be read from a file or
database. The fourth pair is used to receive the result. The last two declarations (lines
9 and 10) are work variables used for displaying the result.

Next, in Example 2, line 5 is removed, and lines 14 through 26 are replaced by:

1. decPackedToNumber (startpack, sizeof (startpack), &startscale, &start);
2. decPackedToNumber (ratepack, sizeof (ratepack), &ratescale, &rate);
3. decPackedToNumber (yearspack, sizeof (yearspack), &yearsscale, &years);
4.

5. decNumberDivide (&rate, &rate, &hundred, &set); // rate=rate/100

6. decNumberAdd (&rate, &rate, &one, &set); // rate=rate+l

7. decNumberPower (&rate, &rate, &years, &set); // rate=rate**years
8. decNumberMultiply (&total, &rate, &start, &set); // total=rate*start
9. decNumberRescale (&total, &total, &mtwo, &set); // two digits please

PR R
[

decPackedFromNumber (respack, sizeof (respack), &resscale, &total);

-
w

// lay out the total as sixteen hexadecimal pairs
for (i=0; i<16; i++) {
sprintf (&hexes [i*3], "%02x ", respack[i]);

}

17. printf ("Result: %s (scale=%d)\n", hexes, resscale);

B R e
o

Here, lines 1 through 3 convert the Packed Decimal parameters into decNumber struc-
tures. Lines 5-9 calculate and rescale the total, as before, and line 11 converts the final
decNumber into Packed Decimal and scale. Finally, lines 13-17 lay out and display the
result, which should be:

Result: 00 00 00 00 00 OO 00 00 00 00 00 03 52 36 45 1lc (scale=2)

Note that the number is right-aligned, with a sign nibble.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 11

Module descriptions

The

section contains a detailed description of each of the modules in the library. Each

description is in three parts:

1.
2.

The

An overview of the module and a description of its primary data structure.

A description of other definitions in the header (.h) file. This summarizes the content
of the header file rather than detailing every constant as it is assumed that users
will have a copy of the header file available.

A description of the functions in the source (.c) file. This is a detailed description
of each function and how to use it, the intent being that it should not be necessary
to have the source file available in order to use the functions.

modules all conform to some general rules:

They are reentrant (they have no static variables and may safely be used in multi-
threaded applications).

All data structures are passed by reference, for best performance. Data structures
whose references are passed as input arguments are never altered unless they are
also used as a result. Where appropriate, functions return a reference to a result
argument.

Up to some maximum (chosen by a tuning parameter in the decNumber header file),
calculations do not require additional allocated memory, except for rounded input
arguments. Whenever memory is allocated, it is always released before the function
returns or raises any traps. The latter constraint implies that long jumps may safely
be made from a signal handler handling any traps, for example.

The names of all modules start with the string “dec”.
The names of all public constants start with the string “DEC”.

Public functions (and macros used as functions) in a module have names which start
with the name of the module (for example, decNumberadd). This naming scheme
corresponds to the common naming scheme in object-oriented languages, where that
function (method) might be called decNumber.add.

The type “int” is not used; instead the symbol “Int” is defined to be a 32-bit integer
in decContext.h (see page 14).

Strings always follow C conventions. That is, they are always terminated by a null
character (*\o").

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 12

decContext module

The decContext module defines the data structure used for providing the context for
operations and for managing exceptional conditions.

There are six fields in the decContext structure:

digits

emax

round

status

Version 2.00

The digits field is used to set the precision to be used for an operation. The
result of an operation will be rounded to this length if necessary, and hence
the space needed for the result decNumber structure is limited by this field.

digits is of type 1nt, and must have a value in the range 1 through 999,999,999.

The emax field is used to set the magnitude of the largest adjusted exponent that
is permitted. The adjusted exponent is calculated as though the number were
expressed in scientific notation (that is, except for 0, expressed with one non-
zero digit before the decimal point).

If the adjusted exponent for a result or conversion would be larger than emax
then an overflow results. If the adjusted exponent for a result or conversion
would be smaller than -emax then an underflow results.

emax is of type Int, and must have a value in the range 0 through 999,999,999.

The round field is used to select the rounding algorithm to be used if rounding
is necessary during an operation. It must be one of the values in the rounding
enumeration:

ROUND_CEILING Round towards +infinity.

ROUND_DOWN Round towards O (truncation).

ROUND FLOOR Round towards -infinity.

ROUND HALF DOWN Round to nearest; if equidistant, round down.

ROUND_HALF EVEN Round to nearest; if equidistant, round so that the final
digit is even.

ROUND HALF UP Round to nearest; if equidistant, round up.
ROUND_UP Round away from 0.

The status field comprises one bit for each of the exceptional conditions
described in the specifications (for example, Division by zero is indicated by
the bit defined as DEC Division by zero). Once set, a bit remains set until
cleared by the user, so more than one condition can be recorded.

status is of type uInt (unsigned integer). Bits in the field must only be set if
they are defined in the decContext header file. In use, bits are set by the
decNumber library modules when exceptional conditions occur, but are never
reset. The library user should clear the bits when appropriate (for example,
after handling the exceptional condition), but should never set them.

Copyright (c) IBM Corporation 2001. All rights reserved. 13

traps

extended

The traps field is used to indicate which of the exceptional conditions should
cause a trap. That is, if an exceptional condition bit is set in the traps field,
then a trap event occurs when the corresponding bit in the status field is set.

In this implementation, a trap is indicated by raising the signal sSIGFPE
(defined in signal.h), the Floating-Point Exception signal.

Applications may ignore traps, or may use them to recover from failed oper-
ations. Alternatively, applications can prevent all traps by clearing the traps
field, and inspect the status field directly to determine if errors have occurred.

traps is of type uInt. Bits in the field must only be set if they are defined in
the decContext header file.

Note that the result of an operation is always a valid number, but after an
exceptional condition has been detected its value may be one of the special
values (NaN or infinite). These values can then propagate through other
operations without further conditions being raised.

The extended field controls special processing for mathematical applications.
When 0, zeros are treated as in the base specification and the exponent range
is balanced. When 1, a value of -0 is possible, some extra checking required
for IEEE 854 conformance is enabled, and subnormal numbers can result from
operations (that is, results whose adjusted exponent is as low as
-emax-(digits-1) are possible).

extended is of type Flag (unsigned char).

Please see the specification documents for further details on the meaning of specific set-
tings (for example, the rounding mode).

Definitions

The deccontext.h header file defines the base types used by the decNumber module
(such as 1nt, a 32-bit integer, and uint, an unsigned 1nt). It is therefore automatically
included by decNumber.h. In addition to defining the base types and the decContext data
structure described above, it includes:

< The enumeration of the rounding modes supported by this implementation (for the
round field of the decContext).

= The exceptional condition flags, used in the status and traps fields.

= Groupings for the exceptional conditions flags, indicating how they correspond to the
named conditions defined in IEEE 854, which are usually considered errors
(DEC_Errors), etc.

e A character constant naming each of the exceptional conditions (intended for
human-readable error reporting).

< Constants used for selecting initialization schemes.

= Definitions of the public functions in the decContext module.

Version 2.00

Copyright (c) IBM Corporation 2001. All rights reserved. 14

Three of the exceptional condition flags merit special attention; the DEC_Rounded flag’ is
set whenever a result or input operand is rounded (even if only zero digits were dis-
carded), the DEC_Inexact flag® is set whenever a result is inexact (non-zero digits were
discarded) due to rounding of input operands or the result, and the DEC_Lost _digits flag
is set when an input operand is made inexact through rounding.

Unlike the other status flags, which indicate error conditions, execution continues
normally when these events occur and the result is a number (unless an error condition
also occurs). As usual, any or all of the three conditions can be enabled for traps and in
this case the operation is completed before the trap takes place.

Functions

The deccontext.c source file contains the public functions defined in the header file, as
follows.

decContextDefault(context, kind)

This function is used to initialize a decContext structure to default values. It is stongly
recommended that this function always be used to initialize a decContext structure, even
if most or all of the fields are to be set explicitly (in case new fields are added to a later
version of the structure).

The arguments are:

context (deccontext *) Pointer to the structure to be initialized.

kind (znt) The kind of initialization to be performed. Currently only the three
values defined in the decContext header file are permitted (any other value
will initialize the structure to a valid condition, but with the

DEC_Invalid operation status bit set).

When kind is DEC_INIT BASE, the defaults for ANSI X3.274 arithmetic are set.
That is, the digits field is set to 9, the emax field is set to 999999999, the round
field is set to rROUND HALF UP, the status field is cleared (all bits zero), the traps
field has all the DEC Errors bits set (DEC_Rounded, DEC Inexact, and
DEC Lost digits are 0), and extended is set to O.

When kind is DEC_INIT SINGLE, defaults for a single precision number using
IEEE 854 rules are set. That is, the digits field is set to 15, the emax field is
set to 999, the round field is set to ROUND HALF EVEN, the status field is cleared
(all bits zero), the traps field is cleared (no traps are enabled), and extended is
set to 1.

When kind is DEC_INIT DOUBLE, defaults for a double precision number using
IEEE 854 rules are set. That is, the digits field is set to 33, the emax field is
set to 9999, and the other fields are set as for DEC_INIT SINGLE.

Returns context.

7 The DEC_Rounded condition is defined in the extended decimal arithmetic specification.

8 The DEC_Inexact condition is defined in IEEE 854 and in the extended decimal arithmetic specifica-
tion.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 15

decContextSetStatus(context, status)

This function is used to set one or more status bits in the status field of a decContext. If
any of the bits being set have the corresponding bit set in the traps field, a trap is raised
(regardless of whether the bit is already set in the status field). Only one trap is raised
even if more than one bit is being set.

The arguments are:
context (deccontext *) Pointer to the structure whose status is to be set.

status (uznt) Any 1 (set) bit in this argument will cause the corresponding bit to be
set in the context status field. Only bits defined in the decContext header file
should be set; the effect of setting other bits is undefined.®

Returns context.

Normally, only library modules use this function. Applications may clear status bits but
should not set them (except, perhaps, for testing).

Note that a signal handler which handles a trap raised by this function may execute a
C long jump, and hence control may not return from the function. It should therefore
only be invoked when any state and resources used (such as allocated memory) are clean.

decContextSetStatusFromString(context, string)

This function is used to set a status bit in the status field of a decContext, using the name
of the bit as returned by the decContextStatusToString function. If the bit being set has
the corresponding bit set in the traps field, a trap is raised (regardless of whether the bit
is already set in the status field).

The arguments are:
context (deccontext *) Pointer to the structure whose status is to be set.

string (char *) A string which must be exactly equal to one that might be returned
by decContextStatusToString. If the string is “No status”, the status is not
changed and no trap is raised. If the string is “Multiple status”, or is not
recognized, then the call is in error.

Returns context unless the string is in error, in which case NULL is returned.

Normally, only library and test modules use this function. Applications may clear status
bits but should not set them (except, perhaps, for testing).

Note that a signal handler which handles a trap raised by this function may execute a
C long jump, and hence control may not return from the function. It should therefore
only be invoked when any state and resources used (such as allocated memory) are clean.

9 If “private” bits were allowed, future extension of the library with other conditions would be impossible.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 16

decContextStatusToString(context)

This function returns a pointer (char *) to a human-readable description of a status bit.
The string pointed to will be a constant.

The argument is:

context (decContext *) Pointer to the structure whose status is to be returned as a
string. The bits set in the status field must comprise only bits defined in the
header file.

If no bits are set in the status field, a pointer to the string “No status” is returned. If
more than one bit is set, a pointer to the string “Multiple status” is returned.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 17

decNumber module

The decNumber module defines the data structure used for representing numbers in a
form suitable for computation, and provides the functions for operating on those values.

The decNumber structure is is optimized for efficient processing of relatively short
numbers (tens or hundreds of digits); in particular it allows the use of fixed sized struc-
tures and minimizes copy and move operations. The functions in the module, however,
support arbitrary precision arithmetic (up to 999,999,999 decimal digits, with exponents
up to 9 digits).

Compile-time parameters in the header file provide for full checking of input arguments,
run-time internal tracing control, and storage allocation auditing. These options are
usually disabled, for best performance, but are useful for testing and when introducing
new conversion routines, etc.

Two further compile-time parameters tune the trade-offs between storage use and speed.
The first of these is normally set so that short numbers (tens of digits) require no storage
management — working buffers for operations will be stack based, not dynamically allo-
cated. The second determines the granularity of calculations (the number of digits per
unit of storage) and is normally set to a power of two.

The essential parts of a decNumber are the coefficient, which is the significand of the
number, the exponent (which indicates the power of ten by which the coefficient should be
multiplied), and the sign, which is 1 if the number is negative, or 0 otherwise. The
numerical value of the number is then given by: (-1)™" x coefficient x 10*"",

Numbers may also be a special value. The special values are NaN (Not a Number), which
may be quiet (propagates quietly through operations) or signaling (raises the Invalid oper-
ation condition when encountered), and Zinfinity.

These parts are encoded in the four fields of the decNumber structure:
digits The digits field contains the length of the coefficient, in decimal digits.

digits is of type Int (signed integer), and must have a value in the range 1
through 999,999,999.

exponent The exponent field holds the exponent of the number. Its range is limited by
the requirement that the range of the adjusted exponent of the number be bal-
anced and fit within a whole number of decimal digits (in this implementation,
be -999,999,999 through +999,999,999). The adjusted exponent is the expo-
nent that would result if the number were expressed with a single digit before
the decimal point, and is therefore given by exponent+digits-1.

When the extended flag in the context is 1, gradual underflow (using subnormal
values) is enabled. In this case, the lower limit for the adjusted exponent
becomes -999,999,999-(precision-1), where precision is the digits setting from
the context; the adjusted exponent may then have 10 digits.

exponent is of type Int.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 18

bits The bits field comprises one bit which indicates the sign of the number (1 for
negative, 0 otherwise), 3 bits which indicate the special values, and 4 further
bits which are unused and reserved. These reserved bits must be zero.

If the number has a special value, just one of the indicator bits (DECINF,
DECNAN, or DECSNAN) will be set (along with pecNEG iff the value is -«), and in
this case digits must be 1 and the other fields must be 0.

bits is of type uByte (unsigned byte). Masks for the named bits are defined in
the header file.

Isu The Isu field is one or more units in length, and contains the digits of the coef-
ficient. Each unit represents one or more of the digits in the coefficient and has
a binary value in the range 0 through 10"-1, where n is the number of digits
in a unit and is the value set by DECDPUN (see page 20). The size of a unit is
the smallest of 1, 2, or 4 bytes which will contain the maximum value held in
the unit.

The units comprising the coefficient start with the least significant unit (Isu).
Each unit except the most significant unit (msu) contains pEcpprun digits. The
msu contains from 1 through peEcprun digits, and must not be O unless digits
is 1 (for the value zero). Leading zeros in the msu are never included in the
digits count, except for the value zero.

The number of units predefined for the Isu field is determined by
DECNUMDIGITS, Which defaults to 1 (the number of units will be pECNUMDIGITS
divided by DECDPUN, rounded up to a whole unit).

For many applications, there will be a known maximum length for numbers
and DECNUMDIGITS can be set to that length, as in Example 1 (see page 4).
In others, the length may vary over a wide range and it then becomes the
programmer’s responsibility to ensure that there are sufficient units available
immediately following the decNumber Isu field. This can be achieved by
enclosing the decNumber in other structures which append various lengths
of unit arrays, or in the more general case by allocating storage with sufficient
space for the other decNumber fields and the units of the number.

Isu is an array of type unit (an unsigned byte or integer, depending on the
value of DECDPUN), with at least one element. If digits needs fewer units than
the size of the array, remaining units are not used (they will neither be
changed nor referenced). For special values, only the first unit need be 0.

It is expected that decNumbers will usually be constructed by conversions from other
formats, such as strings or decSingle structures, so the decNumber structure is in some
sense an “internal” representation; in particular, it is machine-dependent.*

10 The layout of an Int or Unit might be big-endian or little-endian, for example.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 19

Examples:
If DECDPUN Were 4, the value -1234 .50 would be encoded with:

digits = 6
exponent = -2
bits = 0x80

Isu = {3450, 12}

the value o would be:

digits = 1
exponent = 0
bits = 0x00
Isu = {0}

and -e» (minus infinity) would be:

digits = 1
exponent = 0
bits = 0xCo0
Isu= {0}

Definitions

The decNumber.h header file defines the decNumber data structure described above. It
also includes:

= The tuning parameters:

DECBUFFER This must be a non-negative integer. It sets the precision, in digits,
which the operator functions will handle without allocating dynamic
storage.*

Up to three pECBUFFER-Sized buffers will be allocated on the stack,
depending on the function; comparison, additions, subtractions, and
exponentiation all allocate one, multiplication allocates two, and divi-
sion allocates three. The storage used for each buffer is given by
((DECBUFFER+DECDPUN-1) /DECDPUN) *sizeof (Unit).

It is recommended that DECBUFFER be a multiple of bEcDPUN, and large
enough to hold common numbers in your application.

DECDPUN This must be an integer in the range 1 through 9. It sets the number
of digits held in one unit (see page 19), which in turn alters the per-
formance and other characteristics of the library. In particular:

- If DECDPUN is 1, conversions are fast, but arithmetic operations are
at their slowest. In general, as the value of DECDPUN increases,
arithmetic speed improves and conversion speed gets worse.

< |If pECDPUN is not 1 or a power of two, calculations converting dig-
its to units and vice versa are slow; this slows all operations.

11 Dynamic storage may still be allocated when operands need rounding, but in general this is rare.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 20

< If DECDPUN is greater than 4, either non-ANSI C integers or library
calls have to be used for 64-bit intermediate calculations.?

The suggested value for pecpprun is 4, which gives good performance
for commonplace numbers, and guarantees ANSI C code. If the library
is to be used for high precision calculations (many tens of digits) then
measurements should be made to evaluate whether to set DECDPUN to
8 or possibly 9.

If either of these parameters is changed, the decNumber.c source file must be
recompiled for the changes to have effect.

< The conditional code parameters:

DECCHECK This must be either 1 or 0. If 1, code which checks input structure
references will be included in the module. This checks that the struc-
ture references are not NuLL, and that they refer to valid (internally
consistent in the current context) structures. If an invalid reference
is detected, the DEC_Invalid operation Status bit is set (which may
cause a trap), and any result will be a valid number of undefined
value. This option is useful for verifying programs which construct
decNumber structures explicitly.

Some operations take more than twice as long with this checking
enabled, so it is normally assumed that all decNumbers are valid and
DECCHECK is set to 0.

DECALLOC This must be either 1 or 0. If 1, all dynamic storage usage is audited
and extra space is allocated to enable buffer overflow corruption
checks. The cost of these checks is fairly small, but the setting should
normally be left as 0 unless changes to arithmetic functions have been
made in the decNumber.c source file.

DECTRACE This must be either 1 or 0. If 1, certain critical values are traced
(using printf) as operations take place. This is intended for develop-
ment use only, so again should normally be left as 0.

If any of these parameters are changed, the decNumber.c source file must be
recompiled for the changes to have effect.

e Constants describing the maximum precision and adjusted exponent supported by
the implementation.

= Constants naming the bits in the bits field, such as DECNEG, the sign bit.

= Definition of the powers array, used by several modules in the library. This array
(located in decnumber.c) is of type uInt [] (unsigned integer) and comprises eleven
elements, containing in sequence the value of each power of 10 from O through 10,
where the power of 10 is determined by the offset into the array. The element
powers [3], for example, contains 1000.

= Definitions of the public functions in the decNumber module.

12 The decNumber library currently assumes that non-ANSI 64-bit integers are available if DECDPUN is
greater than 4.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 21

Functions

The decNumber.c source file contains the public functions defined in the header file.
These comprise conversions to and from strings, the arithmetic operations, and some
utility functions.

The functions all follow some general rules:

= Operands to the functions which are decNumber structures (referenced by an argu-
ment) are never modified unless they are also specified to be the result structure
(which is always permitted).

Often, operations which do specify an operand and result as the same structure can
be carried out in place, giving improved performance. For example, x=x+1, using the
decNumberAdd function, can be several times faster than x=y+1.

= Each function forms its primary result by setting the content of one of the structures
referenced by the arguments; a pointer to this structure is returned by the function.

< Exceptional conditions and errors are reported by setting a bit in the status field of
a referenced decContext structure (see page 13). The corresponding bit in the traps
field of the decContext structure determines whether a trap is then raised, as also
described earlier.

< If an argument to a function is corrupt (it is a NULL reference, or it is an input argu-
ment and the content of the structure it references is inconsistent), the function is
unprotected (may “crash”) unless DECCHECK is enabled (see the next rule). However,
in normal operation (that is, no argument is corrupt), the result will always be a
valid decNumber structure. The value of the decNumber result may be infinite or
a quiet NaN if an error was detected (i.e., if one of the DEC_Errors bits (see page 14)
is set in the decContext status field).

< For best performance, input operands are assumed to be valid (not corrupt) and are
not checked unless pEccHECK (see page 21) is 1, which enables full operand checking
(including NULL operands). Whether DEccHECK is O or 1, the value of a result is
undefined if an argument is corrupt. DECCHECK checking is a diagnostic tool only; it
will report the error and prevent code failure by ensuring that results are valid
numbers (unless the result reference is NULL), but it does not attempt to correct
arguments.

Conversion functions

The conversion functions build a decNumber from a string, or lay out a decNumber as a
character string.

decNumberFromString(number, string, context)

This function is used to convert a character string to decNumber format. It implements
the to—number conversion in the base specification or (if extended in the context is 1) the
to—extended—number conversion in the extended specification.

The conversion is exact; if the numeric string has more significant digits than specified
in the context an exceptional condition occurs. The context.digits field therefore

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 22

determines the maximum acceptable precision and defines the minimum size of the
decNumber structure required.

The arguments are:

number (decNumber *) Pointer to the structure to be set from the character string.

string (char *) Pointer to the input character string. This must be a valid numeric
string, as defined in the appropriate specification. The string will not be
altered.

context (deccontext *) Pointer to the context structure whose digits and emax fields

indicate the maximum acceptable precision and exponent, and whose status
field is used to report any errors. If its extended field is 1, then special values
(x1nf, fInfinity, NaN, Or sNaN, independent of case) are accepted, and the
sign of -0 is preserved.

Returns number.

Possible errors are DEC Conversion syntax (the string does not have the syntax of a
number), DEC Conversion overflow (the number has more than context.digits Sig-
nificant digits or its adjusted exponent is larger than context.emax), Or
DEC_Conversion underflow (the number has an acceptable number of significant digits
but the adjusted exponent is less than -context .emax). If any of these conditions are set,
the number structure will have a defined value as described in the extended specification.

decNumberToString(number, string)

This function is used to convert a decNumber number to a character string, using scien-
tific notation if an exponent is needed (that is, there will be just one digit before any
decimal point). It implements the to—scientific—string conversion of both specifications.

The arguments are:
number (decNumber *) Pointer to the structure to be converted to a string.

string (char *) Pointer to the character string buffer which will receive the con-
verted number. It must be at least 14 characters longer than the number of
digits in the number (number->digits).

Returns string.

No error is possible from this function. Note that non-numeric strings (one of
+Infinity, -Infinity, NaN, Or sNaN) are possible.

decNumberToEngString(number, string)

This function is used to convert a decNumber number to a character string, using engi-
neering notation (where the exponent will be a multiple of three, and there may be up
to three digits before any decimal point) if an exponent is needed. It implements the
to—engineering—string conversion in the base specification.

The arguments and result are the same as for the decNumberToString function, and
similarly no error is possible from this function.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 23

Arithmetic functions

The arithmetic functions all follow the same syntax and rules, and are summarized
below. They all take the following arguments:

number (decNumber *) Pointer to the structure where the result will be placed.

lhs (decNumber *) Pointer to the structure which is the left hand side (lIhs) oper-
and for the operation. This argument is omitted for the two monadic opera-
tors, decNumberPlus and decNumberMinus.

rhs (decNumber *) Pointer to the structure which is the right hand side (rhs)
operand for the operation.

context (decCcontext *) Pointer to the context structure whose settings are used for
determining the result and for reporting any exceptional conditions.

Each function returns number.

The precise definition of each operation can be found in the specification documents.

decNumberAdd(number, Ihs, rhs, context)
The number is set to the result of adding the lhs to the rhs.

decNumberCompare(number, lhs, rhs, context)

This function compares two numbers numerically. If the Ihs is less than the rhs then the
number will be set to the value -1. If they are equal (that is, when subtracted the result
would be 0), then number is set to 0. If the lhs is greater than the rhs then the number will
be set to the value 1.

decNumberDivide(number, Ihs, rhs, context)
The number is set to the result of dividing the lhs by the rhs.

decNumberDividelnteger(number, lhs, rhs, context)
The number is set to the integer part of the result of dividing the Inhs by the rhs.

Note that it must be possible to express the result as an integer. That is, it must have
no more digits than context .digits. If it does then DEC Division impossible is raised.

decNumberMinus(number, rhs, context)

The number is set to the result of subtracting the rhs from 0. That is, it is negated, fol-
lowing the usual arithmetic rules; this may be used for implementing a prefix minus
operation.

decNumberMultiply(number, |hs, rhs, context)
The number is set to the result of multiplying the Ihs by the rhs.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 24

decNumberPlus(number, rhs, context)

The number is set to the result of adding the rhs to 0. That is, it is normalized to the
settings given in the context, following the usual arithmetic rules. This may therefore be
used for rounding or for implementing a prefix plus operation.

decNumberPower(number, lhs, rhs, context)
The number is set to the result of raising the Ihs to the power of the rhs.

The rhs must be a whole number (before any rounding); that is, any digits in the frac-
tional part of the number must be zero. It must have no more than nine digits, or
context.digits digits, (whichever is smaller) in the integer part of the number.

decNumberRemainder(number, Ihs, rhs, context)
The number is set to the remainder when Ihs is divided by the rhs.

That is, if the same Ihs, rhs, and context arguments were given to the
decNumberDividelnteger and decNumberRemainder functions, resulting in i and r
respectively, then the identity

lhs = (i X rhs) + r

holds.

Note that, as for decNumberDividelnteger, it must be possible to express the integer part
of the result as an integer. That is, it must have no more digits than context.digits.
If it does then DEC Division impossible is raised.

decNumberRemainderNear(number, Ihs, rhs, context)

The number is set to the remainder when Ihs is divided by the rhs, using the rules defined
in IEEE 854. This follows the same definition as decNumberRemainder, except that the
nearest integer (or the nearest even integer if the remainder is equidistant from two) is
used for i instead of the result from decNumberDividelnteger.

For example, if Ins had the value 10 and rhs had the value 6 then the result would be -2
(instead of 4) because the nearest multiple of 6 is 12 (rather than 6).

decNumberRescale(number, Ihs, rhs, context)

This function is used to rescale a number so that its exponent has a specific value, given
by the rhs.

The rhs must be a whole number (before any rounding); that is, any digits in the frac-
tional part of the number must be zero. It must have no more than nine digits, or
context.digits digits, (whichever is smaller) in the integer part of the number.

The number is set to a value which is numerically equal (except for any rounding) to the
lhs, rescaled so that it has the requested exponent. To achieve this, the coefficient of the
number is adjusted (by rounding or shifting) so that its exponent has the value of the rhs.
For example, if the Ihs had the value 123.4567, and decNumberRescale was used to set
its exponent to -2, the result would be 123.46 (that is, 12346 with an exponent of -2).

Note that the rhs may be positive, which will lead to the number being adjusted so that it
is a multiple of the specified power of ten.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 25

If adjusting the scale would mean that more than context.digits would be needed in
the coefficient, then DEC_overflow is raised. This guarantees that the exponent of the
result is always as specified by the rhs, except when the result is 0.

decNumberSubtract(number, Ihs, rhs, context)
The number is set to the result of subtracting the rhs from the Ihs.

decNumberTolnteger(number, rhs, context)

The number is set to the rhs, rounded to an integer if necessary using the rounding mode
in the context.

Unlike the decNumberRescale (see page 25) function, if more than context.digits
would be needed in the coefficient to express the number with an exponent of 0 then the
number is left unscaled (that is, the exponent may be positive).

Utility functions

The utility functions provide for copying and zeroing numbers, and for determining the
version of the decNumber package.

decNumberCopy(number, source)

This function is used to copy the content of one decNumber structure to another. It is
used when the structures may be of different sizes and hence a straightforward structure
copy by C assignment is inappropriate. It also may have performance benefits when the
number is short relative to the size of the structure, as only the units containing the
digits in use in the source structure are copied.

The arguments are:

number (decNumber *) Pointer to the structure to receive the copy. It must have space
for source->digits digits.

source (decNumber *) Pointer to the structure which will be copied to number. All the
fields of the structure are copied, with the units containing the
source->digits digits being copied starting from Isu. The source structure is
unchanged.

Returns number. No error is possible from this function.

decNumberVersion()

This function returns a pointer (char *) to a human-readable description of the version
of the decNumber package being run. The string pointed to will have at most 16 charac-
ters and will be a constant, and will comprise two words (the name and a decimal number
identifying the version) separated by a blank. For example:

decNumber 2.00

No error is possible from this function.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 26

decNumberZero(number)
This function is used to set the value of a decNumber structure to zero.
The argument is:

number (decNumber *) Pointer to the structure to be set to 0. It must have space for
one digit.

Returns number. No error is possible from this function.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 27

decSingle module

The decSingle module defines the data structure used for single precision decimal num-
bers, in a compact and machine-independent form. Single precision decimal numbers
may have up to 15 decimal digits of precision and 3 decimal digits of exponent.®®

The precise layout of a decSingle number is defined elsewhere;* in this implementation
it is represented as an array of unsigned bytes. There is therefore just one field in the
decSingle structure:

bytes The bytes field represents the eight bytes of a single precision number using
Densely Packed Decimal encoding for the coefficient.®

The decSingle module includes private functions for coding and decoding Densely Packed
Decimal data; these functions are shared by the decDouble module.

Definitions

The decsingle.h header file defines the decSingle data structure described above. It
includes the decNumber.h header file, to simplify use, and (if not already defined) it sets
the DECNUMDIGITS constant to 15, so that any declared decNumber will be the right size
to contain any decSingle number.

The decsingle.h header file also contains:

= Constants defining aspects of decSingle numbers, including the maximum precision
and (adjusted) exponent supported, the bias applied to the exponent, the length of
the number in bytes, and the maximum number of characters in the string form of
the number (including terminator).

< Macros for accessing the leading fields of the number (comprising the sign, exponent,
and reserved bits).

= Definitions of the public functions in the decSingle module.

A further header file, bcd2dpd.h, is also used by the decSingle module. This contains two
look-up tables, used for encoding and decoding Densely Packed Decimal data. These
tables are automatically generated and should not need altering.

13 The exponent can be 4 digits, for subnormal numbers.
14 See http://www2.hursley.ibm.com/decimal/deccode.html

15 See http://www2.hursley.ibm.com/decimal/DPDecimal.html for a summary of Densely
Packed Decimal encoding.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 28

Functions

The decsingle.c source file contains the public functions defined in the header file.
These comprise conversions to and from strings, and to and from decNumber form.
Functions for converting between the decSingle and decDouble forms are located in the
decDouble module (see page 31).

When a decContext structure is used to report errors, the same rules are followed as for
other modules. That is, a trap may be raised, etc.

decSingleFromString(single, string, context)

This function is used to convert a character string to decSingle format. It implements
the to—extended—number conversion in the extended specification (that is, it accepts the
special values +1Inf, tInfinity, NaN, Or sNaN, independent of case, and preserves -0).

The arguments are:
single (decsingle *) Pointer to the structure to be set from the character string.

string (char *) Pointer to the input character string. This must be a valid numeric
string, as defined in the base specification. The string will not be altered.

context (deccontext *) Pointer to the context structure whose status field is used to
report any error. Note that the settings of the context have no effect on the
conversion (no rounding takes place, for example).

Returns single.

Possible errors are DEC Conversion syntax (the string does not have the syntax of a
number), DEC Conversion overflow (the number has more than 15 significant digits or
3 significant digits of positive exponent), or DEC_Conversion underflow (the number has
15 or fewer significant digits but the exponent is too negative). If either of these condi-
tions is set, the single structure will have the value NaN, Infinity, or O, respectively, with
the same sign as the converted number in the last two cases.

decSingleToString(single, string)

This function is used to convert a decSingle number to a character string, using scientific
notation if an exponent is needed (that is, there will be just one digit before any decimal
point). It implements the to-scientific—string conversion in the extended specification.

The arguments are:
single (decsingle *) Pointer to the structure to be converted to a string.

string (char *) Pointer to the character string buffer which will receive the con-
verted number. It must be at least 23 characters long.

Returns string.

No error is possible from this function.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 29

decSingleToEngString(single, string)

This function is used to convert a decSingle number to a character string, using engi-
neering notation (where the exponent will be a multiple of three, and there may be up
to three digits before any decimal point) if an exponent is needed. It implements the
to—engineering-string conversion in the extended specification.

The arguments and result are the same as for the decSingleToString function, and simi-
larly no error is possible from this function.

decSingleFromNumber(single, number, context)
This function is used to convert a decNumber to decSingle format.
The arguments are:

single (decsingle *) Pointer to the structure to be set from the decNumber. This
may receive a numeric value (including subnormal values and -0) or a special
value.

number (decNumber *) Pointer to the input structure. The decNumber structure will
not be altered.

context (deccontext *) Pointer to a context structure whose status field is used to
report any error and whose round field is used to control rounding as required.

Returns single.

An error will occur if the decNumber is outside the range supported by a decSingle. The
possible errors are DEC _Overflow (if its adjusted exponent is greater than +999), or
DEC_Underflow (if the adjusted exponent is less than -999). After overflow or underflow
the result will have the same sign as the number and a value as though the plus operator
had been used on the number using a context which enforces the constraints of single
precision.®

decSingleToNumber(single, number)

This function is used to convert a decSingle number to decNumber form in preparation
for arithmetic or other operations.

The arguments are:

single (decsingle *) Pointer to the structure to be converted to a decNumber. The
decSingle structure will not be altered.

number (decNumber *) Pointer to the result structure. It must have space for 15 digits
of precision.

Returns number.
No error is possible from this function.

16 Note that subnormal numbers are a possible result when an Underflow condition is raised.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 30

decDouble module

The decDouble module defines the data structure used for double precision decimal
numbers, in a compact and machine-independent form. Double precision decimal num-
bers may have up to 33 decimal digits of precision and 4 decimal digits of exponent.*’

The precise layout of a decDouble number is defined elsewhere; in this implementation
it is represented as an array of unsigned bytes. There is therefore just one field in the
decDouble structure:

bytes The bytes field represents the sixteen bytes of a double precision number using
Densely Packed Decimal encoding for the coefficient.

The decDouble module uses private functions, located in the decSingle module, for coding
and decoding Densely Packed Decimal data.

Definitions

The decbouble.h header file defines the decDouble data structure described above. It
includes the decNumber.h header file, to simplify use, and (if not already defined) it sets
the DECNUMDIGITS constant to 33, so that any declared decNumber will be the right size
to contain any decDouble number.

The decbouble.h header file also contains:

= Constants defining aspects of decDouble numbers, including the maximum precision
and (adjusted) exponent supported, the bias applied to the exponent, the length of
the number in bytes, and the maximum number of characters in the string form of
the number (including terminator).

< Macros for accessing the leading fields of the number (comprising the sign, exponent,
and reserved bits).

= Definitions of the public functions in the decDouble module.

Functions

The decbouble.c source file contains the public functions defined in the header file.
These comprise conversions to and from strings, to and from decNumber form, and
between the decSingle and decDouble forms.

When a decContext structure is used to report errors, the same rules are followed as for
other modules. That is, a trap may be raised, etc.

17 The exponent can be 5 digits, for subnormal numbers.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 31

decDoubleFromString(double, string, context)

This function is used to convert a character string to decDouble format. It implements
the to—extended—number conversion in the extended specification (that is, it accepts the
special values +1Inf, tInfinity, NaN, Or sNaN, independent of case, and preserves -0).

The arguments are:
double (decDouble *) Pointer to the structure to be set from the character string.

string (char *) Pointer to the input character string. This must be a valid numeric
string, as defined in the base specification. The string will not be altered.

context (deccontext *) Pointer to the context structure whose status field is used to
report any error. Note that the settings of the context have no effect on the
conversion. (No rounding takes place, for example).

Returns double.

Possible errors are DEC Conversion syntax (the string does not have the syntax of a
number), DEC_Conversion overflow (the number has more than 33 significant digits or
4 significant digits of positive exponent), or DEC_Conversion underflow (the number has
33 or fewer significant digits but the exponent is too negative). If either of these condi-
tions is set, the double structure will have the value NaN, Infinity, or O, respectively, with
the same sign as the converted number in the last two cases.

decDoubleToString(double, string)

This function is used to convert a decDouble number to a character string, using scientific
notation if an exponent is needed (that is, there will be just one digit before any decimal
point). It implements the to-scientific—string conversion in the extended specification.

The arguments are:
double (decbouble *) Pointer to the structure to be converted to a string.

string (char *) Pointer to the character string buffer which will receive the con-
verted number. It must be at least 42 characters long.

Returns string.

No error is possible from this function.

decDoubleToEngString(double, string)

This function is used to convert a decDouble number to a character string, using engi-
neering notation (where the exponent will be a multiple of three, and there may be up
to three digits before any decimal point) if an exponent is needed. It implements the
to—engineering-string conversion in the extended specification.

The arguments and result are the same as for the decDoubleToString function, and
similarly no error is possible from this function.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 32

decDoubleFromNumber(double, number, context)
This function is used to convert a decNumber to decDouble format.
The arguments are:

double (decDouble *) Pointer to the structure to be set from the decNumber. This
may receive a numeric value (including subnormal values and -0) or a special
value.

number (decNumber +*) Pointer to the input structure. The decNumber structure will
not be altered.

context (deccontext *) Pointer to a context structure whose status field is used to
report any error and whose round field is used to control rounding as required.

Returns double.

An error will occur if the decNumber is outside the range supported by a decDouble. The
possible errors are pEC overflow (if its adjusted exponent is greater than +9999), or
DEC_Underflow (if the adjusted exponent is less than -9999). After overflow or underflow
the result will have the same sign as the number and a value as though the plus operator
had been used on the number using a context which enforces the constraints of double
precision.®

decDoubleToNumber(double, number)

This function is used to convert a decDouble number to decNumber form in preparation
for arithmetic or other operations.

The arguments are:

double (decbouble *) Pointer to the structure to be converted to a decNumber. The
decDouble structure will not be altered.

number (decNumber *) Pointer to the result structure. It must have space for 33 digits
of precision.

Returns number.

decDoubleFromSingle(double, single, context)

This function is used to convert a decSingle number to decDouble format.

The arguments are:

double (decDouble *) Pointer to the structure to be set from the decSingle.

single (decsingle *) Pointer to the input structure. The decSingle structure will
not be altered.

context (deccontext *) Pointer to a context structure. This is provided for symmetry
with the decDoubleToSingle function; it is currently unused.

Returns double.
No error is possible from this function (a decSingle will always fit in a decDouble).

18 Note that subnormal numbers are a possible result when an Underflow condition is raised.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 33

decDoubleToSingle(double, single, context)
This function is used to convert a decDouble number to decSingle format.
The arguments are:

double (decbouble *) Pointer to the input structure. The decDouble structure will
not be altered.

single (decsingle *) Pointer to the structure to be set from the decDouble.

context (deccontext =*) Pointer to a context structure whose status field is used to

report any error and whose round field is used to control rounding as required.
Returns single.

If the coefficient of the double has more than 15 digits then the value of the double rounded
to 15 digits (using the rounding mode from the context) is used for the conversion.

An error will occur if the decDouble is outside the range supported by a decSingle. The
possible errors are DEC_Overflow (if its adjusted exponent is greater than +999), or
DEC_Underflow (if the adjusted exponent is less than -999). After overflow or underflow
the result will have the same sign as the double and a value as though the plus operator
had been used on the double using a context which enforces the constraints of single
precision.t®

19 Note that subnormal numbers are a possible result when an Underflow condition is raised.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 34

decPacked module

The decPacked module provides conversions to and from Packed Decimal numbers.
Unlike the other modules, no specific decPacked data structure is defined because packed
decimal numbers are usually held as simple byte arrays, with a scale either being held
separately or implied.

Packed Decimal numbers are held as a sequence of Binary Coded Decimal digits, most
significant first (at the lowest offset into the byte array) and one per 4 bits (that is, each
digit taking a value of 0-9, and two digits per byte), with optional leading zero digits.
The final sequence of 4 bits (called a “nibble”) will have a value greater than nine which
is used to represent the sign of the number. The sign nibble may be any of the six pos-
sible values:

1010 (o0xo0a) plus

1011 (0x0b) minus

1100 (oxoc) plus (preferred)
1101 (0xo0d) minus (preferred)
1110 (oxoe) plus

1111 (0x0f) plus®

Packed Decimal numbers therefore represent decimal integers. They often have associ-
ated with them a second integer, called a scale. The scale of a number is the number of
digits that follow the decimal point, and hence, for example, if a Packed Decimal number
has the value -123456 with a scale of 2, then the value of the combination is -1234.56.

Definitions

The decpacked.h header file does not define a specific data structure for Packed Decimal
numbers.

It includes the decNumber.h header file, to simplify use, and (if not already defined) it
sets the pEcNUMDIGITS constant to 32, to allow for most common uses of Packed Decimal
numbers. If you wish to work with higher (or lower) precisions, define DECNUMDIGITS to
be the desired precision before including the decracked.h header file.

The decpacked.h header file also contains:
< Constants describing the six possible values of sign nibble, as described above.

= Definitions of the public functions in the decPacked module.

20 Conventionally, this sign code can also be used to indicate that a number was originally unsigned.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 35

Functions

The decpacked.c source file contains the public functions defined in the header file.
These provide conversions to and from decNumber form.

decPackedFromNumber(bytes, length, scale, number)
This function is used to convert a decNumber to Packed Decimal format.
The arguments are:

bytes (uByte =*) Pointer to an array of unsigned bytes which will receive the num-
ber.

length (znt) Contains the length of the byte array, in bytes.

scale (znt *) Pointer to an 1nt which will receive the scale of the number.

number (decNumber *) Pointer to the input structure. The decNumber structure will
not be altered.

Returns bytes unless the decNumber has too many digits to fit in length bytes (allowing
for the sign) or is a special value (an infinity or NaN), in which cases NULL is returned
and the bytes and scale values are unchanged.

The number is converted to bytes in Packed Decimal format, right aligned in the bytes
array, whose length is given by the second parameter. The final 4-bit nibble in the array
will be one of the preferred sign nibbles, 1100 (0xoc) for + or 1101 (oxod) for -. The
maximum number of digits that will fit in the array is therefore lengthx2-1. Unused bytes
and nibbles to the left of the number are set to 0.

The scale is set to the scale of the number (this is the exponent, negated). To force the
number to a particular scale, first use the decNumberRescale function (see page 25) on
the number, negating the required scale in order to adjust its exponent and coefficient as
necessary.

decPackedToNumber(bytes, length, scale, number)

This function is used to convert a Packed Decimal format number to decNumber form in
preparation for arithmetic or other operations.

The arguments are:

bytes (uByte =) Pointer to an array of unsigned bytes which contain the number
to be converted.

length (znt) Contains the length of the byte array, in bytes.

scale (znt *) Pointer to an Int which contains the scale of the number to be con-

verted. This must be set; use 0 if the number has no associated scale (that is,
it is an integer). The effective exponent of the resulting number (that is, the
number of significant digits in the number, less the scale, less 1) must fit in
9 decimal digits.

number (decNumber *) Pointer to the decNumber structure which will receive the
number. It must have space for lengthx2-1 digits.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 36

Returns number, unless the effective exponent was out of range or the format of the bytes
array was invalid (the final nibble was not a sign, or an earlier nibble was not in the
range 0-9). In these error cases, NULL is returned and number will have the value O.

Note that -o is a possible resulting number, but the exponent of a zero will always be 0
(that is, the scale is ignored if the coefficient is 0).

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 37

Appendix — Changes

This appendix documents changes since the first (internal) release of this document
(Draft 1.50, 21 Feb 2001).

Changes in Draft 1.60 (9 July 2001)
= The significand of a number has been renamed from integer to coefficient, to remove
possible ambiguities.

< The decNumberRescale function has been redefined to match the base specification.
In particular its rhs now specifies the new exponent directly, rather than as a
negated exponent.

< In general, all functions now return a reference to their primary result structure.

e The decPackedToNumber function now handles only “classic” Packed Decimal format
(there must be a sign nibble, which must be the final nibble of the packed bytes).
This improved conversion speed by a factor of two.

< Minor clarifications and editorial changes have been made.

Changes in Draft 1.65 (25 September 2001)

= The rounding modes ROUND_ CEILING and ROUND FLOOR have been added.

= Minor clarifications and editorial changes have been made.

Changes in Version 2.00 (4 December 2001)
This is the first public release of this document.

e The decDoubleToSingle function will now round the value of the decDouble number
if it has more than 15 digits.

e The decNumberTolnteger, decNumberRemainderNear, and decNumberVersion functions
have been added.

< Relatively minor changes have been made throughout to reflect support for the
extended specification.

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved. 38

Index

/l comments in C programs 3
.c (source) files 1
.h (header) files 1

A

addition 24, 26
adjusted exponent 13, 18
ANSI standard
for REXX 1
IEEE 754-1985 2
IEEE 854-1987 1
X3.274-1996 1
arguments
corrupt 22
modification of 22
passed by reference 12
arithmetic
decimal 1
decNumber 24
auditing, of storage allocation 21

B

base specification 1
BCD

See Binary Coded Decimal
Binary Coded Decimal 1, 2, 35
bits

in decNumber 19
bytes

in decDouble 31
in decSingle 28

C

checking, of arguments 21, 22
code parameter
DECALLOC 21
DECCHECK 21
DECTRACE 21
coefficient
in decNumber 18
comparison 24
compound interest 5
constants
naming convention 12
conversion
decNumber 22
double to number 33
double to single 34
double to string 32
number to double 33
number to packed 36
number to single 30
number to string 23
packed to number 36
single to double 33
single to number 30
single to string 29, 30
string to double 32
string to number 22
string to single 29
copying numbers 26
corrupt arguments 22

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved.

D

DEC_Conversion_overflow condition 9
DEC_Division_impossible 24, 25
DEC Errors bits 6, 7, 14, 22
DEC_Inexact condition 6, 15
DEC_Lost _digits condition 15
DEC_Overflow condition 26
DEC_Rounded condition 6, 15
DECALLOC code parameter 21
DECBUFFER tuning parameter 20
DECCHECK code parameter 21, 22
decContext 1

digits 13
emax 13
extended 14
module 13
round 13
status 13
traps 14

decContextDefault function 15
decContextSetStatus function 16
decContextSetStatusFromString
function 16
decContextStatusToString function 17
decDouble 2

bytes 31

module 31

using 10
decDoubleFromNumber function 33
decDoubleFromSingle function 33
decDoubleFromString function 32
decDoubleToEngString function 32
decDoubleToNumber function 33
decDoubleToSingle function 34
decDoubleToString function 32
DECDPUN tuning parameter 19, 20
decimal arithmetic 1

using 3
DECNEG sign bit 21
decNumber 1

bits 19

coefficient 18

digits 18

examples 20

exponent 18

Isu 19

module 18

msu 19

Version 2.00

sign 18, 19

significand 18

size 18

special values 19

version 26
decNumber.h 4
decNumberAdd function 24
decNumberCompare function 24
decNumberCopy function 26
decNumberDivide function 24
decNumberDividelnteger function 24
decNumberFromsString function 22
decNumberMinus function 24
decNumberMultiply function 24
decNumberPlus function 25
decNumberPower function 25
decNumberRemainder function 25
decNumberRemainderNear function 25
decNumberRescale function 25
decNumberSubtract function 26
decNumberToENngString function 23
decNumberTolnteger function 26
decNumberToString function 23
decNumberVersion function 26
decNumberZero function 27
DECNUMDIGITS constant 9, 10, 19

set by decPacked.h 35

set by decSingle.h 28, 31
decPacked 2

module 35

using 11
decPackedFromNumber function 36
decPackedToNumber function 36
decSingle 2

bytes 28

module 28

using 10
decSingleFromNumber function 30
decSingleFromString function 29
decSingleToEngString function 30
decSingleToNumber function 30
decSingleToString function 29
DECTRACE code parameter 21
digits

in decContext 13

in decNumber 18
division 24, 25
double floating-point 1
dynamic storage 12, 20, 21

auditing 21

Copyright (c) IBM Corporation 2001. All rights reserved. 40

E

emax
in decContext 13
engineering notation 23, 30, 32
error handling 14
active 7
passive 6
with signal 7
example 3
active error handling 7
compound interest 5
decDouble numbers 9
decNumber 20
decPacked module 11
decSingle numbers 9
Example 1 4
Example 2 5
Example 3 6
Example 4 7
Example 5 9
Example 6 11
passive error handling 6
simple addition 4
special values 20
exceptional conditions 14
exponent
adjusted 13, 18
in decNumber 18
setting 25
exponent maximum 13
exponentiation 25
extended
in decContext 14
extended specification 1

F

file
header 1
source 1
Flag data type 14
functions
arithmetic 24
conversions 22
naming convention 12
utilities 26

H

header file 1
decContext 14
decDouble 31
decNumber 20
decPacked 35
decSingle 28

IEEE standard 754-1985 2
IEEE standard 854-1987 1
Inexact condition 15
infinite results 22

infinity 18

initializing numbers 22, 27
Int data type 12, 13, 14
integer rounding 26

L

longjmp function 7
Lost digits condition 15
Isu, in decNumber 19

M

maximum exponent 13
minus operation 24
modification of arguments 22
module 12
decContext 13
decDouble 31
decNumber 18
decPacked 35
decSingle 28
naming convention 12
reentrancy 12
monadic operators 24
msu, in decNumber 19

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved.

multiplication 24

N

naming convention
constants 12
functions 12
modules 12
NaN 18
quiet 18
results 22
signaling 18
negation 24
nibble 35

P

Packed Decimal 1, 2, 35
parameters

code 21

tuning 20
plus operation 25
power operator 25
powers of 10 array 21

prefix
minus 24
plus 25

printf function 4

Q

quiet NaN 18

R

reentrant modules 12
references, to arguments 12
remainder 25
rescaling 25
results
rounding of 15
undefined 22

round

See also rounding

in decContext 13
round-to-integer operation 26
ROUND_CEILING 13
ROUND_DOWN 13
ROUND_FLOOR 13
ROUND_HALF_DOWN 13
ROUND_HALF_EVEN 13
ROUND_HALF_UP 13
ROUND_UP 13
Rounded condition 15
rounding

detection of 15

enumeration 13

to integer 26

using decNumberPlus 25

S

scale 2, 35
setting 25
scientific notation 23, 29, 32
setjmp function 8
SIGFPE
implementation issues 3
signal 7,8, 14
sign
DECNEG bit 21
in decNumber 18, 19
signal
function 8
handler 7
signaling NaN 18
significand
See also coefficient
in decNumber 18
single floating-point 1
size, of decNumber 18
source file 1
decContext 15
decDouble 31
decNumber 22
decPacked 36
decSingle 29
special values 14, 18, 20
in decNumber 19
specification

Version 2.00 Copyright (c) IBM Corporation 2001. All rights reserved.

42

base 1
extended 1
speed of operations 20

Standard Decimal Arithmetic 1

status
in decContext 13
stdio.h 4
storage allocation 21
auditing 21

subnormal values 18

T

traps 14
in decContext 14
tuning parameter 12
DECBUFFER 20
DECDPUN 20

Version 2.00

U

ulnt data type 13, 14
undefined results 22
unit

in decNumber 19

size of 19, 20
User's Guide 3
utilities

decNumber 26

V

value of a number 18
version, of decNumber 26

Z

zero decNumber 19, 20
zeroing numbers 27

Copyright (c) IBM Corporation 2001. All rights reserved.

43

