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Abstract. This paper describes the LYCOS system, an experimental co-synthesis environment.
‘We present the motivation and philosophy of LYCOS and after an overview of the entire system,
the individual parts are described. We use a single CPU, single ASIC target architecture and we
describe the techniques we use to estimate metrics concerning hardware, software and communi-
cation in this architecture. Finally we present a novel partitioning technique called PACE, which
has shown to produce excellent results, and we demonstrate how partitioning is used to do design
space exploration.
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1. Introduction

Hardware/software partitioning is often viewed as the synthesis of a target archi-
tecture consisting of a single CPU and a single dedicated hardware component (full
custom, FPGA, etc.) from an initial system specification, e.g. as in [15]. The
partitioning onto such a target architecture is depicted in figure 1.

Even though the single CPU, single ASIC architecture is a special and limited
example of a distributed system, the architecture is relevant in many areas such
as DSP design, construction of embedded systems, software execution acceleration
and hardware emulation and prototyping [43], and it is the most commonly used
target architecture for automatic hardware/software partitioning.

In this paper we present the LYCOS (LYngby CO-Synthesis) system which is
an experimental co-synthesis environment. In its current version LYCOS may be
used for hardware/software partitioning using a target architecture consisting of a
single CPU and a single ASIC communicating through memory mapped I/0. In
this paper we will focus on how partitioning is done in the LYCOS system and how
it is used to do design space exploration.

Consider the hardware/software partitioning as depicted in figure 1 and a set of
requirements to be fulfilled by the partitioned system. In order to obtain a feasible
partition, that is a partition which fulfills the requirements, we need to know the
target architecture, i.e. the CPU on which to run the software, the technology of the
dedicated hardware and the interface used for communication between hardware,
and software. However, the choice of target architecture will greatly influence
the outcome of the partition as each target architecture will have different “best”
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Figure 1. Hardware/software partitioning of a specification onto a target architecture.

partitions. For instance, selecting a fast but expensive CPU may lead to little (or
no) hardware needed, while selecting a slow but cheap CPU may require a large
amount of dedicated hardware. Thus, in order to solve the problem efficiently we
need a way to explore the design space.

Typically we will have an idea about possible suitable target architectures. These
may be selected based on the designer’s experience, the desire to reuse predesigned
components or the use of third party components. One way to explore the design
space is to find the best partition for each possible target architecture and select
the best among these.

To find the best partition for a given target architecture, we need a model to
represent computation and ways to estimate metrics of software, hardware, and
communication.
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Figure 2. The transformations involved in obtaining a hardware/software partition.



It is important that the model of computation is independent of any particular
implementation strategy, that being software or hardware. This will allow for an
unbiased design space exploration as well as for translations from various specifi-
cation languages. One model targeted towards partitioning is based on extracting
chunks of computation, called basic scheduling blocks or just blocks. A partition in
this model is an enumeration of each block indicating whether it is placed in soft-
ware or hardware. Figure 2 illustrates the transformations involved in obtaining a
partition from the initial specification.

The decision of whether to put a particular block in software or hardware has
to be based on an evaluation of the metrics of interest for the entire system. This
evaluation can be done in the physical domain by actual implementation, e.g. by
synthesizing the hardware to a gate netlist on which accurate metrics for area and
performance may be obtained, or it can be done in the model domain which is less
accurate but much faster. For design space exploration we have to do the partition-
ing and evaluation over and over again, thus, the speed of the evaluation process is a
critical issue. In practise, this means that the evaluation has to be done within the
model domain, requiring efficient estimation techniques. Figure 3 illustrates how
the performance metrics of the system may be obtained from estimators. Other
metrics may be obtained in much the same way.
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Figure 3. Obtaining performance metrics by the use of estimators.

The paper is organized as follows. In section 2 we outline related work on hard-
ware/software partitioning. Section 3 gives an overview of the LYCOS system. In
section 4 we introduce our implementation independent model and present ways to
translate from different specification languages into this model. Section 5 presents
the system model used for partitioning and how it is analyzed. Section 6 gives
an introduction to sections sections 7, 8, and 9 on estimation of metrics for hard-
ware, software, and communication, respectively. In section 10 we present a novel
hardware/software partitioning algorithm which forms the basis of automatic hard-
ware/software partitioning in the LYCOS system. Section 11 describes how the
LYCOS system may be used to do design space exploration. Finally, we end the
paper with a summary and some directions for on-going and future work.



2. Related Work

Several research groups have addressed the problem of co-synthesis and in particular
that of hardware/software partitioning. The field of hardware/software partitioning
was pioneered by two research groups; COSYMA [14], [15], [27] by Ernst et al. and
Vulcan [21], [22] by Gupta and De Micheli.

The COSYMA system performs hardware/software partitioning on an internal
representation which is an extended syntax graph. This representation is used
for initial analysis such as simulation and profiling. The representation is obtained
from a C-like input specification called C'*, which allows for concurrency and timing
constraints. The partitioning approach assumes an initial all-software solution and
uses a simulated annealing algorithm to move chunks of software code to hardware
until the timing constraints are met. COSYMA allows for the use of advanced
software structures, such as pointers, in the specification, however, only code which
can be implemented directly in hardware is considered for hardware implementation
during the partitioning. The algorithm takes communication into account and only
variables which need to be transferred are actually considered, i.e. the possibility
of local store is exploited. The target architecture for COSYMA is a coprocessor
architecture, i.e. one CPU and one ASIC, where the ASIC is used to speedup the
CPU. The CPU is RISC based, i.e. heavily pipelined.

Conceptually, the Vulcan system is similar to COSYMA. However, they start by
an all-hardware solution specified in HardwareC which fulfills the timing require-
ments. The specification is translated into an internal graph based representation
on which the partitioning is performed. The algorithm, which uses an iterative
approach to move operations from hardware to software, takes into account the re-
duction in communication overhead when neighboring vertices are placed together
in either software or hardware. The target architecture consist of a single CPU
and one or more ASICs which can all access the memory of the CPU. Whereas
the COSYMA system is targeted towards processor speed-up, the Vulcan system
is targeted towards designing embedded systems, i.e., the CPU is merely used to
reduce the size of the ASICs. Another important difference is that Vulcan can
handle multiple processes as hardware and software may run in parallel, whereas
COSYMA assumes an interleaved execution of hardware and software.

Two other codesign systems in which hardware/software partitioning is done au-
tomatically is SpecSyn [16] and TOSCA [1], [2]. In SpecSyn the input specification
is produced in the visual language SpecChart which is based on Statecharts [24].
This is translated into an intermediate system representation called SLIF [47], on
which the system analysis and partitioning is performed. SpecSyn supports several
partitioning algorithms [16], [48]. [48] presents a combined approach where clus-
tering is used to reduce the number of code blocks to be considered, and a greedy
algorithm is used to obtain the partition. The interesting aspect of this approach
is that it is able to reach regions in the design space which lies between the regions
obtained by fast greedy algorithms and those obtained by the more costly simulated
annealing algorithms. In TOSCA the internal representation is based on concurrent



hierarchical finite state machines (FSM) which are generated from either standard
languages, i.e. C or VHDL, or from higher-level languages such as SpeedChart
and Occam. Hardware/software partitioning seems to be done automatically by a
clustering algorithm which tries to cluster FSMs based on some closeness criteria.
The target architecture for TOSCA is a single standard processor and one or more
coprocessors embedded on a single chip.

A number of researchers have focused on algorithm aspects rather than complete
systems. Jantsch et al. [30], [31], [32] present a dynamic programming algorithm to
solve the partitioning problem of optimizing an existing C-program for speed given
a hardware area constraint. The algorithm is derived from the Knapsack Stuffing
algorithm [12] and solves (with exponential memory requirements) the partitioning
problem for a partitioning model in which blocks can include other blocks and
blocks in general therefore cannot be moved to/from hardware independently of
each other. A full loop block for example includes the loop body and loop test
blocks but all three are considered simultaneously in their model. Kalavade and
Lee [35] present a partitioning algorithm which takes communication into account.
The partitioning goal is to minimize hardware area given a global execution time
constraint. The algorithm has been implemented in the framework of Ptolemy [7]
and thus, uses a system level description as input. Another approach using a
higher level language as input is presented by Barros et al. [3]. The partitioning
algorithm is a two-stage clustering algorithm which selects groups of code based
on similarity measures obtained from classification of assignments in the input
specification, which is described in UNITY [9)].

Codesign systems in which hardware /software partitioning is obtained by user in-
teraction have also been investigated. Among these are POLIS [10], PARTIF [28],
and CASTLE [8]. In POLIS analysis and transformations are done on a uniform
and formal internal hardware/software representation called Co-design Finite State
Machines, CFSMs. Partitioning is done manually by assigning each CFSM to ei-
ther hardware or software. POLIS will assist the designer by providing estimation
tools. POLIS is targeted towards real-time reactive systems, and currently the in-
put specifications are given in Esterel [4] and translated to CFSMs. The target
architecture is a system consisting of general purpose processors combined with a
few ASICs and possible other components such as DSPs. PARTIF is an interac-
tive partitioning tool which allows the designer to explore different partitionings
by applying a small set of transformation and decomposition rules. These rules
are applied to a system representation consisting of hierarchical concurrent FSMs.
The CASTLE system is another codesign framework. Here the input specification
is given in a standard language which can be Verilog, VHDL, or C/C++. This
input specification is translated into a common internal representation based on
control/dataflow graphs, called SIR, which provides the backbone for all tools. As
for POLIS and PARTIF, the partitioning is done manually, but in CASTLE it
is based on mappings from a hardware library which is used to specify complex
components, including microprocessors.



In the Chinook [11] system the emphasis is on module interface and synchro-
nization. The system is used for real-time reactive controllers initially specified in
Verilog. Chinook does not provide automatic hardware/software partitioning, but
leaves it to the designer, nor does it provide code generation tools for the target
processors, but uses standard C compilers. However, Chinook does synthesize the
hardware and software needed for inter process communication which is a difficult
task as the different components may not initially fit very well together.

Research in distributed system co-synthesis has recently recieved a lot of atten-
tion, for instance by Wolf and Ti-Yen [49], [50] and by Jerraya et al. [29].

From the discussion on related work it becomes evident that there are two ma-
jor directions for hardware/software partitioning methods; Automatic partitioning
which in almost all cases means a restricted target architecture, i.e., one CPU and
one or maybe a few ASICs, and manual partitioning which typically allows for more
advanced target architectures. Also, when having advanced target architectures,
synchronization and communication between different components becomes much
more difficult and very important (as for instance in the Chinook system). This is
an aspect which becomes even more important when considering distributed system
co-synthesis.

3. Overview of the LYCOS System

In this section we describe the main ideas and motivations for building the LYCOS
system and give an outline of how the system has been implemented.

One of the main ideas of the LYCOS system is to have a system which supports an
easy inclusion of new design tools and algorithms, as well as new design methods,
e.g. the sequence in which tools have to be applied in order to obtain a solution.
Thus, a key issue for LYCOS has been to be able to test new ideas and algorithms
not as separate entities but as part of a complete design flow. This has to a large
extent required the development of our own tools rather than trying to integrate
existing tools, that being commercial or university tools. However, from the register
transfer level and down to the final layout we are relying on existing commercial
design tools.

Figure 4 gives an overview of the LYCOS system. LYCOS is built as a suite of
tools centered around an implementation independent model of computation, called
Quenya, which is based on communicating control/data flow graphs.

The information which must be communicated between different tools in LYCOS
basically consists of two parts: The central functionality of a design (i.e. the behav-
ior derived from the input specification) and design hints obtained during synthesis
(e.g. partitioning or scheduling information, profiling, and performance). In order
to achieve the necessary flexibility to support the requirements of different kinds
of synthesis tools, while preserving the semantic integrity of the description, this
dichotomy has been reflected in the design of Quenya.

The functional behavior of a design is represented through a hierarchical network
with strictly defined semantics. The network consists of a number of functional
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Figure 4. Overview of the LYCOS system.

units communicating by asynchronous protocols, with the communication channels
represented as shared variables. Thus, Quenya directly allows design partitioning
to be represented, and supports representation of the system’s environment in a
uniform manner. The behavior of an individual functional unit is represented by a
control/data flow graph (CDFG). The basic CDFG provides a uniform representa-
tion of both data and control flow, utilizing lossless and self-timed communication of
tokens, i.e. points of execution with associated data. This basic model for functional
behavior has been extended to support inter-domain communication, allowing the
communication between functional units to be modeled.

Different design problems require different combinations of tools and parameter
settings in order to obtain a suitable solution, and as the right order for a given
design problem is not evident, exploration is needed. Quenya has been designed
with this in mind by keeping tool specific information as annotations to the network
and graphs

In this paper we focus on how the LYCOS system is used to do automatic hard-
ware/software partitioning. Though Quenya is able to represent a distributed sys-
tem, automatic synthesis is currently targeted towards a coprocessor based target
architecture, i.e. a system consisting of a single CPU and a single ASIC. In the
following sections we first present the design flow to obtain a partition from an
initial specification in C or VHDL. We then describe how LYCOS may be used to
do design space exploration.



4. Application Descriptions

The application to be partitioned is externally described by a specification written
in some specification language.

As we would like the LYCOS system to support several specification languages
(see section 4.1), one of the important design decisions for LYCOS was to make
the system independent of the choice of specification language. This has been
achieved by basing the system on a common internal representation which serves
as interface between the specification languages and the partitioning tool. For the
common internal representation we use Quenya CDFGs, in the following refered to
as CDFGs or graphs.

Hence, specifications must first be translated into this internal CDFG represen-
tation before partitioning can be done.

In the following subsections we present the internal CDFG representation, the
supported specification languages and their translation into CDFGs.

4.1. Specification Languages

LYCOS currently supports specifications written in translatable subsets of the pro-
gramming language C and the hardware specification language VHDL.

Due to the limits in the expressive power of CDFGs not all language constructs
can be translated into CDFGs. For instance, pointers cannot be translated, as
CDFGs cannot handle dynamic storage allocation. We are currently investigating
possibilities for extending the CDFG format such that more language constructs
can be translated.

The reason for supporting C as a specification language is that many existing
software applications are written in C and our basic target architecture is well
suited for software speedup. In order to be able to specify applications with multiple
processes without extending C with some hardware functionality, we chose VHDL
as a specification language too. VHDL has expressive power in this direction, but
of course, other HDL languages, such as Verilog, could have been chosen.

In the future we would also like to support formal specification languages like
RSL [45] and Synchronized Transitions [46]. Such languages together with their
associated methods and support tools have shown to be useful for specifying sys-
tems. One of the reasons for this is that they provide a higher level of abstraction
than conventional languages like C and VHDL making it possible to specify what
the properties of the system should be without giving implementation details like
particular data type representations and algorithms. Furthermore, the formal basis
of these languages makes it possible to formally prove properties of specifications
and thereby increase the reliability of the specifications.



4.1.1.  Specification for the Straight example

In figure 5, a VHDL specification of an application called Straight is shown. It has
proven to be a good example to use to show different aspects of our tool suite and al-
gorithms as well as to highlight interesting aspects of partitioning and co-synthesis.
We will use this example throughout the paper to illustrate our approach. More
complex examples containing loops and conditionals are considered in section 11.

entity straight is procedure Block3(a, dz, z, u, y : in INTEGER;
port (clk, load : in BOOLEAN; u-o, y-o, zo : out INTEGER) is
a-i, dz-i, z-i, u-i, y-i : in INTEGER variable z1, ul, yl1 : INTEGER;
u_ o V-0, Z_ o : out INTEGER); variable z2, u2, y2 : INTEGER;
end strmght; begln
architecture behavioral of straight is u - (3* u*dz) - (8*y*dz);
begin y + (u*dz)
process 1 + d:
variable a, dz, z, u, y : INTEGER; B (3*21* 1*dz) - (3*yl*dz);
variable z1, ul, y1, 22, u2, y2 : INTEGER; (ul*dz),

variable z3, u3, y3, z4, u4, y4 : INTEGER}
variable z5, u5, y5, 26, u6, y6 : INTEGER;
variable z7, u7, y7, z8, u8, y8 : INTEGER;
variable 79, u9, y9': INTEGER;

e (3*z2*u2*dz) (3*y2*dz);
¥y2 4 (u2*dz);

procedure Block0(a, dz, z, u, y : in INTEGER; begin
. u-o, y.o, z.0: out INTEGER) is -- wait for the rising clock edge

begin if not clk then
Z-0 := Zj U-0 := U; y-0 1= Y; wait until clk;
end; end if;
procedure Blockl(a, dz, z, u, y : in INTEGER; -- Load the input values

u_o, y-o, z_o : out INTEGER) is i
begin
z.o =1z + d
u.o :=u - (S*Z*u*dz) - (3*y*dz);

y-0 1=y + (u*dz);

end;

Blockl(a, dz, z, u, y, ul, yl, zl);
procedure Block2(a, dz, z, u, y : in INTEGER;

u_o, y-o, z_o : out INTEGER) is BlockO(a, dz, z1, ul, y1, u2, y2, z2);
variable
z1, ul, yl : INTEGER; Blockl(a, dz, z2, u2, y2, u3, y3, z3);
begln
: Block2(a, dz, u3, y3, z3, u4, y4, z4);
ul :=u - (3* u*dz) - (3*y*dz);
v + (u*dz); Block2(a, dz, u4, y4, z4, u5, y5, 25);
dz
ul © (3¥z1*ul*dz) - (3*yl*dz); Block3(a, dz, u4, y4, z4, ué, y6, 26);
yo 1=yl + (ul*dz);
end; -- Store the output values
u,o < = ub;
y-o < = y6;
Zo < = 26}
if clk then
wait until not clk;
end if;

end process;
end behavioral;

Figure 5. VHDL specification for the Straight example

The bodies of the functions Block1, Block?2, and Block3 is taken from the HAL
example [44]. In Block2, the code has been duplicated with data dependencies made
from first to second copy of the HAL example. In Block3, it has been triplicated.
Note that the functionality of BlockO is merely a transfer of values.

4.2. The Internal CDFG Representation

This section provides a short introduction to the Quenya CDFGs. A more detailed
description of the CDFGs is given in [6] which extends the CDFGs defined in [13],
and the computational semantics of the CDFGs has been formalized in [41]. The
formalization ensures that the meaning of CDFGs is unambiguous and makes it
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possible to formally reason about CDFGs [5] (e.g. to prove that a CDFG has the
desired input-output behaviour or that a CDFG transformation is correct).

The purpose of CDFGs is to represent computations. An example of a CDFG is
given in figure 6.

Figure 6. A CDFG representing the computation z := x + x * y

A CDFG is a hierarchical directed hypergraph consisting of nodes and edges.
The semantics is based on a token passing mechanism, similar to colored Petri
nets [33], [36]. The edges are entities on which tokens (i.e. values) can flow between
nodes. Nodes can remove tokens from their input edges and place tokens on their
output edges according to certain firing rules. There are different kinds of nodes.
The nodes shown in figure 6 are all infiz nodes, which have two input edges, one
output edge and an associated infix operator. When an infix node, op, has tokens,
say vl and v2, on its input edges and no token on its output edge, it can fire by
placing the token, v1 op v2, on its output edge, and removing v! and v2 from its
input edges. Other kinds of nodes are prefix nodes, constant nodes, control nodes to
express conditionals, iteration nodes to express loops, void nodes to absorb tokens
from edges, etc. For more details on these nodes, see [6], [41]. A graph is ezecuted
by placing tokens on its input edges and letting the nodes fire until no more firing
rules can be satisfied.

It is possible for a collection of CDFGs to communicate with each other through
shared variables. Special interface nodes are used for this: Import and export nodes
for sampling and updating the contents of shared variables, respectively, and wait
nodes for synchronization to global events (i.e. certain contents of shared variables).
Figur 7 gives an example of two CDFGs, Graphl and Graph2, which communicate
through two shared variables, s and ok. Graphl has two export nodes, E1 and
E2, which can update s and ok, respectively, with the value of a token on the x
edge and b edge, respectively. Graph2 has a wait node, W1, which requires ok to
contain the value true in order to fire. In addition Graph2 has an import node,
I1, which can sample the value of s and place it on the y edge. A common feature
of the interface nodes is that they all require a token on their vertical input edge
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in order to fire, and that they generate a token on their vertical output edge after
firing. This feature has been used to ensure a certain sequencing of the events. For
instance, I1 must wait sampling s until W1 has fired.

Graphl Graph2

Figure 7. Two CDFGs communicating through shared variables.

4.3. Translation

Having formulated a specification in one of the supported specification languages,
the specification should be translated into a CDFG which represents the same
input/output behaviour as the specification.

Below we will explain the translation of the most important VHDL language
constructs. The translation of the corresponding C language constructs is the same,
unless otherwise stated. For a more detailed explanation of the translation from C
and VHDL, see [25], [26], and [6], respectively.

4.8.1.  Assignments and exrpressions

In section 4.2 we saw that the graph in figure 6 represents the same computation as
the assignment z := x + x % y. This example gives an idea of how assignments
and expressions are translated.

As should be obvious from the example, there is a close correspondance between
variables in a specification and edges in the graph into which it is translated. At
each point of the specification any variable has a corresponding edge. Each time an
assignment is made to the variable, it gets another corresponding edge. In this way
several edges may correspond to the same variable. For instance, the assignment
X := x + x % y is translated into the graph shown in figure 8, where x1 is the
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corresponding edge of x before the assignment and x2 is the corresponding edge of
x after the assignment.

Figure 8. A CDFG representing x := x + x % y

4.8.2.  Conditionals

An if statement, if e then s1 else s2 end if| is translated into a graph whose
shape is shown in figure 9. The graph is composed of the graphs of e, s1 and s2,
and a number of branch nodes (those nodes marked with a B inside) and merge
nodes (those marked with an M inside). The branch and merge nodes all have
as their control input edges the output edge b of the graph of the test expression
e. The graph is executed as follows. First Graph(e) will be executed leading to a
token on the b edge. Depending on whether this token is true or false, the branch
nodes will move the tokens of their vertical input edges to the input edges of the
sub-graph of s1 or s2, respectively. After execution of the selected sub-graph, the
merge nodes will move the tokens of the output edges of the selected sub-graph to
the output edges of the merge nodes.

4.8.83.  Loops

A while statement, while e loop s end loop, is translated into a graph whose
shape is shown in figure 10. The graph is composed of the graphs of e and s, and
a number of entry nodes (those marked with an En inside) and exit nodes (marked
with an Ex inside). The entry and exit nodes all have as their control input edges
the output edge, b, of Graph(e). The graph is executed as follows. First the entry
nodes will move the tokens of their right vertical input edges to the input edges
of Graph(e) which will then be executed. After execution of Graph(e) the b edge
will contain a new token. If it is false, the exit nodes will move the tokens of the
output edges of Graph(e) to the rightmost output edges of the exit nodes and the
execution of the graph is thereby finished. Otherwise the exit nodes will move the
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.

Graph(sl) Graph(s2) Graph(e)

Figure 9. Translation of if statements, if e then s1 else s2 end if

tokens of the output edges to the input edges of Graph(s) and after the execution
of that, the entry nodes will move the tokens of the output edges of Graph(s) to
the input edges of Graph(e) and the execution will continue as before. For loops
and repeat-until loops are translated similarly.

Graph(s) Graph(e)

L@é 2
i

Figure 10. Translation of while statements, while e loop s end loop

4.8.4. Functions and procedures

The body of a function or procedure is translated into a seperate graph. A function
or procedure call induces a node in the graph that represents the call. For each



14

input parameter, an input edge is connected to the node, and for each output
variable an output edge is connected. See section 4.3.6 for an example.

4.8.5.  Communication and synchronization

In VHDL it is possible to specify a set of communicating processes that use the
wait statement for synchronization. The wait statement is translated into a wait
node and communication expressions are translated into import and export nodes.

4.8.6. Translation for the Straight example

Translation of the specification shown in figure 5 results in a hierarchical graph.
In figure 11, the leftmost graph shows the top level of the graph corresponding to
the process declaration (the implicit infinite loop of a VHDL process has been
left out for convenience). The rightmost graph shows the calculations of one of the
functions, blockl.

Figure 11. Graph with two levels of hierarchy for the Straight example.
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5. System Modeling and Analysis

This section presents the system model used by the partitioning algorithm, and
describes how it is obtained from the internal representation.

5.1. The Control Flow Graph Interface Format

Since we handle complex applications, the Quenya CDFGs tend to grow in com-
plexity. Because of this, an interface to the internal representation has been defined.

The basic idea in the Control Flow Graph Interface Format (ConGIF) is to focus
on the control flow of the application. It is however important to note that no
information is lost in ConGIF. ConGIF CDFGs are defined as follows:

Definition. A ConGIF CDFG (N, E) is a set of nodes and directed edges where
an edge e; ; = (n;,n;) from n; € N ton; € N, i # j, indicates that n; depends on
n; because of data dependencies and/or control dependencies. A node n is defined
as:

n = DFG | Cond | Loop | FU | Wait
Cond = (Branchl, Branch?2)
Loop = (Test,Body)
Branchl = ConGIF CDFG

Branch2 =

ConGIF CDFG

Test ConGIF CDFG
Body = ConGIF CDFG
FU = ConGIF CDFG

where a DFG is a pure dataflow graph without control structures, FU represents a
function or procedure call, Wait is used for synchronization with the environment,
Branchl and Branch2 are the CDFGs to be executed in the “true” and “false”
branch case of a conditional Cond, respectively, and Test and Body are the test
and body CDFGs of a Loop.

An important limitation of the derivation of the ConGIF CDFG from the Quenya
CDFG is that control flow is handled in an “as soon as possible” manner. This
means that the control flow of the ConGIF CDFG basically follows the sequential
way of writing the specification of the application. As a result the full control
flow parallelism within the application is not expressed directly in the graph. It
is, however, not lost as it can be deduced by a data dependency analysis on the
control flow level [19].
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5.2. Derivation of Basic Scheduling Blocks

In order to be able to partition the application, the corresponding ConGIF CDFG
must first be divided into Basic Scheduling Blocks (BSBs) that may be moved
between hardware and software. For each node in the ConGIF CDFG, a BSB is
created as shown in figure 12. Each BSB can have child BSBs which are shown

MAIN
Wait

Eody DFG
Loop

Test
Test FU
T DFG
' Body
:@
v , cond
(e Branchl

\ B Branchl B Branch2 DFG
it . Branch2

: . bFG
ConGIF CDFG BSB Hierarchy

Figure 12. The BSB hierarchy and its correspondence with the ConGIF CDFG.

indented under the BSB. In this way a BSB hierarchy which reflects the hierarchy
of the application is obtained. With each BSB we associate information which is
used by the partitioning algorithm to determine whether it should be placed in
hardware or software:

Definition. For a BSB, B;, the function info(B;) returns the associated informa-
tion:

info(B;) = (s,irts,iyQhisbhi,Ti, We)

where a;; and t5; are the area (code size) and execution time of B; when placed

in software, ap; and t5; are the area and execution time of B; when placed in
hardware and r; and w; contain the read-set and write-set variables of B;. The
read-set of a BSB contains the variables that are read by the BSB. The write-set
of a BSB contains the variables that are written by the BSB.

In order to be able to control the granularity (number and sizes) of the BSBs
which are considered by the partitioning algorithm, parent BSBs can be collapsed
as to appear as single BSBs instead of the child BSBs they are composed of. This
is illustrated in figure 13.

The partitioning algorithm only considers leaf BSBs which are BSBs which have
no children. The leaf BSBs are marked with a dot in the figure. When BSBs
are collapsed, the number of leaf BSBs decreases. In this way, the run-time of
partitioning algorithms which depends on the number of BSBs can be reduced.

As all leaf BSBs together make up the application, we can now define the appli-
cation in terms of leaf BSBs:
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Figure 13. Adjusting BSB granularity by hierarchical collapsing.

Definition. An application is a sequence S of n leaf BSBs, i.e.
S =(By,Ba,...,By)
where B; denotes BSB number i and n is the total number of leaf BSBs.

In order to estimate performance, it is necessary to know how many times each
BSB is executed for typical input data. This information is obtained from profiling,
see section 5.3. At this point it is convenient to define two global functions which
return profiling information for individual BSBs and individual variables:

Definition. The function pc(B;) returns the number of times a BSB has been
executed in a profiling run (“pc” is short for “profiling count”).

Definition. The function ac(v) (short for “access count”) takes any variable v in
the application and returns the number of times the variable is accessed.

5.3. Profiling

The purpose of profiling is to determine the values returned by the functions pc
and ac for a given application and a given set of input data. This will be referred
to as the profile.

Since we allow applications with data dependent loops, conditionals, and syn-
chronizations, it is in general not possible to determine a static execution profile
for a given application. However, from a partitioning point of view it is important
to have some information about time critical parts of the application, since these
might have to be moved into hardware in order to meet timing constraints. If the
input data used for profiling are carefully selected, the profile will expose potentially
time critical parts of the application.

It should be emphasized that the profile is a hint to the partitioning tools. It is
not a worst case analysis and cannot be used when considering applications with
hard timing constraints. Also the profile could differ widely for different sets of
input data.
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Profiling is performed on the Quenya representation and is therefore independent
of the final implementation. Instead of writing a dedicated CDFG simulator, the
profile is obtained by translating the CDFG to C++. During the translation, code
is added to collect the execution count during execution. The translation is a
simple linearization of the CDFG representation. Multiple processes are supported
by executing one process at a time until it is suspended, in a round-robin fashion.

It is necessary to supply a test environment. This may either be written directly
in C++ or supplied as a CDFG (translated from either C or VHDL). In the latter
case the test environment should be translated to C++. Writing the test envi-
ronment requires a minimal amount of work since it should merely implement the
communication protocol.

Executing the C++ program is much faster than running a CDFG simulator and
allows us to use larger sets of input data. Once created, the profile is annotated
back to the CDFG. Also, apart from providing valuable information about the
execution of the CDFG the execution of the C++ program may be used for a
simple validation of the functionality.

The profile takes into account the hierarchy of the application. This means that
for each function the profiler will keep separate counts for different callers. There-
fore, to get the total number of times a function has been called it is necessary to
sum the individual counts.

5.8.1.  Profiling the Straight Example

The example in section 4.3.6 contains no loops or branches so the individual counts
will be equal for all parts of the application. However, since Block1 and Block?2 are
called twice, each will have two counts, therefore the total count for these blocks
will be twice the counts for the other blocks.

6. Estimation aspects

Just as it is necessary to be able to operate with different tradeoffs between accuracy
and execution time for the partitioning algorithms, it is also necessary to be able to
operate on different levels of estimation accuracy. Fast but less accurate estimates
must be used in the design space exploration phase, while more accurate and time
consuming estimation methods should be used in the later phases.

The purpose of estimation is to achieve as accurate measures as needed of the
outcome of the co-synthesis process. Typical measures are software and hardware
execution time, communication time, software object code size (including size of
communication routines) and hardware area (including communication aggregate
area). The most accurate measures are of course obtained by actually performing
the co-synthesis process (from which the software- and hardware area measures
can be determined) and then executing the result on a given target (which results
in the dynamic hardware, software and communication time measures), but this
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is a very time consuming process, and is clearly infeasible when we consider that
the partitioning algorithms require estimates for all considered partitions for an
architecture and on top of that are executed repeatedly for a lot of different target
configurations.

So how do we decrease estimation time (on the expense of estimation accuracy)
in the best way? First we must note that the estimation problem can be divided
into two subproblems, namely

1. Modeling of the hardware- and software compilation process which results in
static area measures.

2. Modeling of the execution process which results in dynamic performance mea-
sures. This ultimately includes modeling of performance characteristics of com-
munication protocols, caches, pipelines, prefetch queues, snooping, waitstates,
etc.

Both kinds of models have to be as accurate as possible and to be consistent with
each other. These objectives are best satisfied if we know how the software- and
hardware compiler are constructed. The most accurate knowledge is obtained if we
do not use third party compilers, but build them ourself instead. This illustrates
the importance of tool integration which we aim at achieving in the LYCOS system
by constructing the tools ourselves in a way that let them easily communicate
estimates and results to each other.

When using external hardware/software compilers it is very difficult to model
them exactly, and this may result in estimates which differ considerably from the
outcome of these compilers. This means that the partitioning algorithms make
decisions on a wrong basis, and thereby result in worse target configurations and
functional partitions and in constraints that may not be satisfied.

Section 5 has shown how we obtain profiling estimates and sections 7 to 9 de-
scribe in detail how hardware, software and communication estimates are obtained.
Currently only one fast level of estimate accuracy is supported. It utilizes the same
hardware library and hardware scheduler that will ultimately be used for hardware
compilation but only a simple generalized software compiler model. As we continue
development of hardware- and software cross compilers, we intend to support more
accurate levels of estimates which will enable us to estimate for example global op-
timizations over BSB boundaries that these compilers may perform. With regard
to dynamic execution estimation, we currently only model simple non-pipelined
software processors (but do support the use of pipelined hardware modules), and
disregard complex matters as caches, etc.

7. Hardware Modeling and Estimation

In order to be able to estimate the hardware area of the final result from hardware
synthesis, we model the hardware target architecture in a very general manner,
using the Architectural Construction Environment, ACE, as described in [23]. This



20

environment is used to describe the hardware components of our target architecture,
and it has the following key features:

A hardware component is described in an Architecture and a Functional
Module.

The Architecture is a “black box” that describes the interface of the compo-
nent.

The Architecture has several (optional) attributes, where the most important
are estimated area of the hardware component and the minimum cycle time
for correct functional operation. The estimates are generated by the library
designer.

The Functional Module describes the functionality of the component. The
module describes the operations provided by the component, and the com-
munication protocols of these operations (Protocol Flow Graphs, PFGs), that
is, the way to interface with the component. Also storage devices within the
component that are usable from outside of the component are listed in the
Functional Module.

The Functional Module allows for descriptions of combinatorial and pipelined
components.

The representation contains several additional constructs.

(FIXED-ARCHITECTURE mul-ser (FUNCTIONAL-MODULE mul-ser
(TYPES (ARCHITECTURE mul-ser)
(INTEGER-TYPE int 0x0000 OxFFFF) (OPERATIONS
) (OPERATION multiply ((IN int a) (IN int b)
(PORTS (RETURN int c))
(IN int in1) (LATENCY 15)
(IN int in2) (PFG
(OUT int outi) (TRANSFER (mul-ser (in a) (in b)
) (out ¢)))
(AREA-ESTIMATE 103 103 103) )
(MINIMUM-CYCLE-TIME 14.8) )

) )
(STORAGE)
(INSTRUCTIONS
(INSTRUCTION mul-ser ((IN int a) (IN int b)
(OUT int c))
(DELAY 15)
(TRANSFER
(CYCLE 0
(INPUT a ini (DELAY 0))
(INPUT b in2 (DELAY 0))
)
(CYCLE 15
(OUTPUT ¢ outi (DELAY 14.8))

Figure 14. The Architecture and Functional Module of a serial multiplier described in ACE

In figure 14 a serial multiplier is described in ACE. The Architecture defines

the type int, which is the type of the three ports of the multiplier (two inputs,
one output). Also, the estimated area (minimum, typical and maximum) is listed
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together with the minimum cycle time for correct operation of the multiplier. In the
Functional Module, the operations of the component are listed, in this case only
one, and for each operation, the PFG dictates how to interface to the operation. Each
Functional Module is internally composed of a set of instructions to which the
operations refer (one operation can refer to several instructions). Each instruction
is composed as a list of transfers that describes the instruction in a cycle true
manner.

The multiplier shown in figure 14 is a “pipelined” component with equal latency
(of the operation multiply) and delay (of the instruction mul-ser). In such cases
we refer to the component as multicycled (another case of multicycled components
is when the operation of a combinatorial component is stretched over several clock
cycles).

In cycle 0, the values on input-ports inl and in2 of the architecture are trans-
ferred (by the PFG of the operation multiply) to the instruction mul-ser through
the parameters a and b of this instruction. After a delay of 15 cycles, the result is
returned through the output parameter c to the output-port out1.

The component would have been pipelined if the latency was less than the delay
(the operation could be re-invoked before the current computation(s) has produced
its output). If the delay is zero, which implies the latency to be zero too, the
component is combinatorial.

ACE may also be used to describe communication channels [42], and we are
currently investigating the possibility of describing software components like mi-
croprocessors and ASIPs in the representation.

7.1. Hardware Area Estimation

Using the ACE models of the components in the hardware part of a given target
architecture, the total hardware area for a given implementation can be estimated.

A common way of estimating the hardware area of a BSB is to estimate how much
area a full hardware implementation of the BSB will occupy [31], [35]. This includes
hardware to do the calculations of the BSB and hardware to control the sequencing
of these calculations. If the total chip area is divided into a datapath area and a
controller area, each BSB moved to hardware may be viewed as occupying a part
of the datapath and a part of the controller. Figure 15a shows this model when
one BSB has been moved to hardware.

When more than one BSB are moved to hardware they may share hardware
modules as they do not execute in parallel. Hence, approaches which estimate area
as the summation of datapath and control areas for all hardware BSBs will probably
overestimate the total area. This problem is depicted in figure 15b where the area
of the datapath is not equal to the sum of the individual BSB datapaths.

In our approach, the datapath area, agqp, is the area of a set of preallocated
hardware resources in the datapath as illustrated in figure 15¢, i.e.
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Figure 15. BSB area estimation which accounts for hardware sharing: a) Controller- and datapath
area for a single BSB, b) When sharing hardware, the total area for multiple BSBs is less than
the summation of the individual areas, c) Variable controller area and fixed datapath area for
multiple BSBs with hardware sharing.

Adp = D e Qdp,r

where R is the set of preallocated resources and agp, , is the area estimate of the in-
dividual resources (components). The area estimate for each component is obtained
from the hardware target architecture described in ACE.

If the total chip area is denoted aso1qy We can write the area left for the BSB
controllers, a., as:

Q¢ = Qotal — Adp = Qtotal — Z’I‘ER Qdp,r

The BSBs share the preallocated resources, and therefore we are only concerned
with the area cost of implementing the BSB controllers. Thus, the hardware area
of a BSB is estimated as the hardware area of the corresponding controller and is
for a BSB, B;, denoted ap,; (c.f. section 5.2). The hardware estimate of a BSB (i.e.
a BSB controller) will depend on the number of timesteps required for executing
the BSB [37].

7.2. Hardware Execution Time Estimation

The hardware execution time for a BSB is determined by the scheduler in our tool
suite [18]. The scheduler is based on dynamic list scheduling but with the enhance-
ment that the tool handles the control structure of the applications as well. The
overall algorithm ScheduleCDFG is shown in figure 16. The algorithm sched-
ules the ConGIF CDFG ¢ using the resources (hardware datapath components) R.
The algorithm schedules the control-flow of the algorithm, by following the order of
control-structures induced by ConGIF. This means that no control-structures are
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scheduled in parallel (e.g. a loop and a conditional), hence, the parallelism within
the application is not utilized to its full extend. Scheduling control-structures (i.e.
BSBs) in parallel is however of major concern when trying to speed up an applica-
tion, and the problem has been dealt with in [19]. This scheduling algorithm has,
however, not been incorporated in LYCOS yet, since the partitioning algorithm at
this point only considers BSBs that execute in mutual exclusion.

The reason that functions (FU’s) are only scheduled once is that they can only
have one schedule each, at least for a pure hardware solution. The resources are
shared between the different parts of the CDFG due to mutual exclusion.

ScheduleCDFG(G, R) = ScheduleDFG(D, R) =
for n = first node to last node in G do { Calculate ASAP values for all nodes in D.
case n { L = list of nodes ready to be scheduled
DFG : ScheduleDFG(n,R) while not done {
Cond : { for_all n in £ do {
ScheduleCDFG(Branchl,R); Urgency(n) = ASAP(n) - current control step
ScheduleCDFG(Branch2,R) }
} Rt =R;
Loop : { Sort(L, Urgency);
ScheduleCDFG(Test,R); for m = first in £ to last in £ do {
ScheduleCDFG(Body,R) if Op(m) € R {
} Schedule m in current c step;
FU : { L=L\m;
if FU has not been scheduled yet then { Rt = R¢\ Op(m)
ScheduleCDFG(FU,R) }
} }
} Add new ready nodes to L;
Wait : { Increase current c step
Schedule n in current control-step }
} }
}
}
}

Figure 16. Basic scheduling algorithms

When scheduling the data flow using the function ScheduleDFG, which is based
on dynamic list scheduling, a very simple and quickly calculated metric has been
used to weigh the different operations that are ready to be scheduled. The weight
is simply the pre-calculated ASAP value subtracted by the current control step
value. This could yield negative values, but the algorithm is indifferent to this,
since it only compares the values. The approach has proven to be very efficient and
yields as good schedules as compared to using more advanced metrics, which are
harder to compute [18]. The scheduler is used not only to compute the hardware
execution time estimates, but also to generate final schedules that could be used in
the hardware synthesis.

Looking at figure 12, it is clear that the execution time estimate of a leaf BSB
(note: a leaf in the fully expanded BSB hierarchy) is easily determined from the
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schedule of a ConGIF CDFG. To obtain the final hardware execution time for
each leaf BSB, ¢, ;, the schedule length (number of timesteps) of each leaf BSB is
multiplied with the profiling count of the BSB.

Execution times for higher level constructs such as loop BSBs and conditional
BSBs are obtained by summing the execution times of their child BSBs. Note that
we do not compute the execution time of a conditional as the maximum of the
execution time of each of its branches. Since we have a profile on the conditional,
we know how many times each of the branches are executed and therefore the total
execution time for the conditional must be the sum of the execution times of the
branches.

Finally, the number of timesteps used in the schedule is used to estimate the
hardware controller area, ap;, for each leaf BSB as the number of timesteps is
equal to the number of states in the controller [37].

7.3. Hardware Execution Time for the Straight Example

We have used the hardware execution time estimator to schedule the Straight ex-
ample for three different sets of resource allocations. The results are shown in
table 1. The execution time estimate takes the profile into account, but for the
Straight example, the profile is very simple as discussed in section 5.3. Note the
typical trade-off between execution time and datapath area.

Table 1. Hardware execution time estimates for the Straight
example

Adder/subtracter ~ Multipliers aqp  Number of cycles

1 1 472 231
2 2 908 133
1 2 569 135

8. Software Modeling and Estimation

Software execution time for a pure DFG (i.e. no controlflow) is estimated by per-
forming a topological sort (linearization) of the nodes in the DFG. The operations
of the nodes are then mapped to a generic instruction set with the addressing
modes of the instructions determined by data-dependencies and a greedy register
allocation scheme.

Figure 17 shows three equally valid linearizations for the same DFG. Different lin-
earizations result in the same number of control steps but have potentially different
register requirements. This may result in different mixtures of addressing modes
and intermediate register-to-memory and memory-to-register move instructions for
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A) Simple data flow graph B) Three different topological sortings

Figure 17. Example of different DFG linearizations. Partly from [20], page 27, fig. 10

the software instructions that correspond to the graph nodes and thus in different
execution times and object code sizes. We do not currently model the linearization
strategy or register allocation scheme of any particular compiler, but will do so
as we develop our own cross compiler. The linearization is performed using the
topological sort algorithm from [34].

The execution times of the generic instructions to which the DFG nodes are
mapped, are determined from a technology file corresponding to the target micro-
processor, as illustrated in figure 18. This is similar to the approach described

Genericinstruction

dmem3 <-- dmem1 + dmem?2

8086 instructions / \ 68020 instructions

mov ax, word ptr{bp+offset1] (10) mov a6@(offset1), d0 (7)
add ax, word ptr[bp+offset?] (9+EA1L) add a6@(offset2), d0 (2+EA2)
mov word ptr{bp+offset3], ax (10) mov dO, a6@(offset3) (5)
Texhnology file for 8086 Technology file for 68020
generic instruction ‘ execution time size generic instruction ‘ execution time size

dmem3 <-- dmem1 + dmem2

35 B dmem3 <-- dmem1 + dmem2

22

Figure 18. Execution-time of a generic instruction for different processors([17], page 6, fig.3)

in [17], where good estimation results are reported, and we use the same technol-
ogy files for the 8086, 80286, 68000 and 68020 microprocessors. The advantages
as compared to an approach where a specific compiler is used for each processor is
that it is not necessary to make/find a new compiler for each new processor that is
considered and that “compilation” is faster. On the other hand, the eventual opti-
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mizations of the compiler actually used in the co-synthesis process are not modeled
very accurately.

The execution time of the whole DFG is obtained by summing the execution
times of the generic instructions. This sum is multiplied with the profiling count
for the DFG. Execution times for higher level constructs such as loop BSBs and
branch BSBs are obtained as described in section 7.2.

8.1. Software Execution Time for the Straight Example

We have used the estimation scheme described above to obtain execution time
estimates of the Straight example for each of the supported processors. The results
are shown in table 2.

Table 2. Software execution time esti-
mates for the Straight example

Micro-processor  Number of cycles

8086 8647
80286 1848
68000 5166
68020 2988

9. Communication Estimation

Communication is currently assumed to be memory mapped I/O. The transfer of
n values from software to hardware is assumed to require n generic MOV micro-
processor instructions and n Import operations as defined in the hardware library.
Communication from hardware to software is estimated in the same way, just using
the hardware Export operation instead. Estimating the number of values n will be
explained in the next section.

10. Hardware/Software Partitioning

This section presents the PACE algorithm [37], [39] which is used to obtain fast
functional partitions. The idea behind the algorithm is that it should be able to
handle a semi-global view of communication and hardware sharing while still being
relatively fast as compared to heuristics which are capable of optimizing for global
communication, global compiler optimizations, etc.
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10.1. The Partitioning Model
The partitioning model which the PACE algorithm uses is illustrated in figure 19.
In this model, hardware BSBs and software BSBs cannot execute in parallel. Fur-

Sw HW Sw HW

B1

|

B2

3,4

K_J

B5
—
B6

6,7
B7

VK—J

B8

A) B)

Figure 19. Partitioning model used by PACE: a) Example of actual data-dependencies between
hardware- and software BSBs, b) How data-dependencies between adjacent hardware BSBs and
software BSBs are interpreted in the model.

thermore, adjacent hardware BSBs are assumed to be able to communicate the
read /write variables they have in common directly between them without involving
the software side. As illustrated in the figure, a given hardware/software partition
can be thought of as composed of sequences of adjacent BSBs which only commu-
nicate their effective read- and write-sets from/to the software side. The following
definitions formalize these assumptions.

Definition. S; ;, j > i, denotes the sequence of BSBs (B;, Bjy1,.. ., B;).

Definition. The effective read-set and the effective write-set of a sequence S; ; are
denoted r; ; and w; ; respectively and are defined as !

ri; = (riUrigaU---Urj) \ (ws Uwig1 U Uwy)
wi,j = (wiUwH_lU---ij)\(riUriHU---Urj)
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Using these definitions and the BSB definitions given in section 5.2 we can now
compute the speedup induced by moving a sequence of BSBs from hardware to
software. Note, that in this paper we will use the term “speedup” to denote the ab-
solute time saved by moving functionality to hardware and not the relative speedup
which is otherwise commonly used.

Definition. The total (possibly negative) speedup induced by moving a BSB se-
quence S;; to hardware is denoted s; ; and is computed as

sij = Y PC(BR) (s — thi) — (Y ac(@)tsmn+ Y ac(v)tnss)

k=1 VET;,; VEW;

where t,_,;, and t,_, denote the software-to-hardware and hardware-to-software
communication times for a single variable, respectively.

Definition. The area penalty a; ; of moving S; ; to hardware is computed as the
sum of the individual BSB areas (note, the area of the BSB is the area used to
implement the BSB controller, c.f. section 7.1) is computed as :

J
ai,j = E Qh,k
k=i

In section 7.1 we discussed how the effect of hardware sharing is taken into ac-
count. Note that in calculating the speedup and area of a sequence it is not con-
sidered that hardware synthesis may synthesize the sequence as a whole which
would probably reduce both sequence area and execution time as compared to just
summing the individual area- and execution time components as described above.
Incorporating such sequence optimizations in the estimations will be fairly straight-
forward but has not been carried out yet. Note, however, that the improvement
in speedup induced by all BSBs within the sequence being able to communicate
directly with each other is taken into account.

10.2. The Partitioning Problem

The partitioning problem can now be formulated as that of finding the combination
of non-overlapping hardware sequences which yields the best speedup while having
a total area penalty less than or equal to the available hardware controller area A.

The problem is best illustrated by an example. Figure 20 shows four BSBs which
must be partitioned as to reach the largest speedup on the available area A=3. The
speedup and area penalty for a single BSB which is moved to hardware without
considering interactions with neighboring BSBs is shown below each BSB. The
numbers between two BSBs denote the extra speedup which is incurred because
of the BSBs being able to communicate directly with each other when they are
both placed in hardware. If A for example is placed in hardware, then placing B
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Sap=2 Sgc=2 Scp=4
A —» B —» C —» D

a,=1 ag=1 a.=1 ap=1
Spa=5 Sg =10 Sc=2 Sp =10

Figure 20. Example of partitioning problem with communication cost considerations.

in hardware as well will increase the speedup by 2 due to the fact that A and B no
longer have to communicate across the hardware/software boundary.

Obviously B and D should be placed in hardware as they have large inherent
speedups, each equal to 10. This leaves room for one more BSB. Should it be
A or C? The answer to this is not obvious as A induces a large inherent speedup
(5) but a small communication speedup (2) when placed together with B in hard-
ware, whereas C induces a smaller inherent speedup (2) but on the other hand
induces a large communication speedup (2 + 4) when placed together with B and
D in hardware. The following section explain how the PACE algorithm solves this
problem.

10.3. The PACE Algorithm

The algorithm utilizes the previously mentioned fact, that any possible partition
can be thought of as composed of sequences of BSBs. If A, C and D are chosen for
hardware, it corresponds to choosing the sequences S4,4 and S¢,p. The speedup
of sequence S¢,p is larger than the sum of speedups of its components C and D
due to the extra communication speedup induced by both blocks being chosen for
hardware. So a natural approach will be to calculate the areas and speedups of
all sequences of BSBs, and chose the combination of sequences that induces the
largest speedup. The areas and speedups of all sequences are calculated and shown
in table 3. The ordering and grouping of BSBs is explained below.

The problem is to find the combination of non-overlapping sequences which fit
within the available area .4 and whose speedup sum is as large as possible. This
problem cannot be solved with an ordinary Knapsack Stuffing algorithm as some
of the sequences are mutually exclusive (because they contain identical BSBs) and
therefore cannot be moved to hardware at the same time. But if the sequences are
ordered and grouped as shown in the table, a dynamic programming algorithm can
be constructed which does not attempt to chose mutually exclusive sequences for
hardware at the same time.

Before describing how the algorithm works, it is necessary to define the list of
trial areas:

Definition. Let ¢ be an integer value called the area granularity, then the list of
trial areas is defined as:

AT = <ag, a1, .3 Q5y ey >
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Table 3. Grouping of sequences.

Sequence Elements Area Speedup

Group A: All sequences ending with A

Sa,a A 1 5

Group B: All sequences ending with B

Sa,B AB 2 17

SB,B B 1 10

Group C: All sequences ending with C

Sa,c ABC 3 21
SB,c BC 2 14
Sc,c C 1 2

Group D: All sequences ending with D

Sa.p ABCD 4 35
SB,p BCD 3 28
So.p CD 2 16
Sp.p D 1 10

where a; =i -J and a,, = A.

If for exampel A = 10 and 6 = 2 then the list of trial areas is < 0,2,4,6,8,10 >.

Note, that the individual BSB areas must be multiples of 4. The algorithm works
as follows. Assume first that for each group up to and including group C the best
(maximum speedup) combination of sequences has been found and stored for each
trial area in Ar. Now consider group D as well. Assume then that for instance
sequence S¢,p with area ac p, is selected for hardware at the available area a.
How is the optimal combination of sequences on the remaining area a — ac , then
found? As C and D have been chosen for hardware, only A and B remain. So the
best solution on the remaining area must be found in group B which contains the
best combination of sequences for all BSBs from the set {A,B}. Similarly, if the
“sequence” Sp,p is chosen for hardware, the best combination on the remaining
area is found in group C. The optimal combination is always found in the group
whose letter in the alphabet comes immediately before the letter of the first index
in the chosen sequence. The important thing to note is that when a sequence from
group X has been chosen, the optimal combination of sequences on the remaining
area can be found in one of the groups A to pred(X), and, when sequences are
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selected as above, no mutually exclusive BSBs are selected simultaneously. In this
way the best solutions for a given group can always be determined on basis of the
best solutions found for the previous groups.

Area:
1 2 3 4
Group A:
A (a=1,5=5) SA,A 5 5 5 5
Best: SA’A:Sﬁ SA'A:Sﬁ SA’A:Sﬁ SA,A:S
Group B:
AB (a=2,s=17) SA,B 17 17 17
B (a=1.s=10) SB B 10 10+5=15 10+5=15 10+5=15
. Best: SB,B: 10 SA,B: 17 SA,B: 17— SA,B: 17
Group C: |
ABC (a=3,s=21) |S AC 21 21
BC (a=2,s=14) SB c 14 14+5=19 14+5=19
C (a=1,s=2) SCC 2 2+10=12 2+17=19 2+17=19
Best: SB,B: 10 SA,B: 17 SA,C: SA,C; 21
Group D:
ABCD  (a=4,535) |S, | 35— v
BCD  (a=3,5=28) |Sg ) N~ ] 28+ 5=33
CD (a=2,s=16) SC,D 16 16 +17 =33
D (a=l,s=10) |Sy 10 10 +10 =20 10+21=31
Best: SB,B: 10 SD,D: 20 fA,D: 3?

Speedup[SD'D, 2] BestChoice[D, 4] B

BestSpeeduplD, 4]

Figure 21. The PACE algorithm employed for a simple example.

Figure 21 shows how the best combination of sequences can be found using three
matrices; Speedup[1..ng, 0..A4], BestSpeedup[l..n,1..A4] and
BestChoice[l..n, 0..A4].

ng is the number of sequences, n is the number of BSBs and A is the available
area. Zero entries are not shown. Arrows indicate where values are copied from,
but arrows are not shown for all entries in order to make the figure more readable.

The Speedup matrix contains for each sequence and each available area the best
speedup that can be achieved if that sequence is first moved to hardware and
then sequences from the previous groups are moved to hardware. In the figure,
Speedup[Sp,c, 3] is 19 and is found as the inherent speedup of Sp,c which is 14
plus the best obtainable speedup 5 on area 3 —apz,c =3 —2 =1 in group A (as B
and C have been chosen).

The BestSpeedup matrix contains for each group g (which there are n of) and
each area the best speedup that can be achieved by first selecting a sequence from
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that group or one of the previous groups. It can be calculated as

BestSpeedupl[g, a]l = max (Iélax(Speedup [S,al),BestSpeedup[pred(g),al)
€g

The BestChoicel[g,a] matrix identifies the choice of sequence that gave this max-
imum value. The last two matrices are interleaved and typeset with bold letters in
the figure.

In the example, BestChoice[C, 3] is 21 as this is the maximum speedup that
can be found in group C with available area 3 and it is larger than the largest
speedup that could be found in the previous groups, namely 17. The corresponding
choice of sequence is S4,c. In contrast, BestSpeedup[C, 1] and BestChoice[D,1]
are copied from the corresponding entries of the previous group. For group C this
is because all Speedup entries in that group for area 1 are smaller than the best
speedup 10 achieved with only sequences from groups up to and including B. For
group D, Speedup[Sp,p, 1] is also 10, so the choice of best sequence for this group
is arbitrary.

The solution to the posed problem from section 10.2 is found in the
BestChoice[D, 3] and BestSpeedup[D,3] entries. The best initial choice is se-
quence Sp,p with the corresponding total speedup of 28. As the area of this
sequence is 3, no other sequences were taken, and need thus not be found by back-
tracking. This shows that it was best to chose C for hardware instead of A. The
area 4 was included in the figure to show that the algorithm correctly chooses all
four BSBs for hardware when there is room for them. This can be seen from the
[D,4] entries.

Once the BestSpeedup and BestChoice lines have been calculated for each group,
the Speedup values are no longer needed. Actually, the Speedup matrix is not
needed at all, as it can be replaced by the BestSpeedup matrix whose maximum
values can be calculated “on the run”. This is because we are only interested
in maximum values and corresponding choice of sequences for each group. This
means that instead of the memory requirements being proportional to the number
of sequences ng, they are now proportional to n, as only the BestSpeedup and
BestChoice matrices are needed. The PACE algorithm is shown in figure 22.

After the algorithm has been run, the best speedup that can be obtained is
found in the entry BestSpeedup [NumBSBs, AvailableArea]. But as for the simple
Knapsack algorithm, reconstruction of the chosen sequences and thereby of the
chosen BSBs is necessary.

10.4. Algorithm Analysis

Direct inspection of the PACE algorithm shows that the time complexity is O(n? -
len(Ar))? and the space complexity is O(n - len(Ar)) (the PACE-reconstruct al-
gorithm obviously has smaller time and area complexity and can hence be dis-
regarded). Note that areas and speedups must be expressed as integral values.
len(Ar) can be reduced (at the expense of partitioning quality) by using a larger



PACE (n, A) =

/* Initialization */

for_all groups g = 1 to n do
for_all areas a = 0 to A do {
BestChoice[g,a] < {};
BestSpeedup[g,a] + 0;

}
/* Partitioning */
for_all groups g = 1 ton do {
/* Find the best solutions for all groups up to g */
/* All seqs. in group g have high indez g: */
HighBSB « g;
for LowBSB = 1 to HighBSB do {
/* Traverse the BSB seqs. in group g */
SeqArea < total area of seq. SLowBSB,HighBSB?
SeqSpeedup +
total speedup of seq. SLOWBSB,HighBSB;
for_all areas a = SeqArea to A do {
/* A is such that there is room for the seq. */
/* Assume that the sequence is selected for */
/* hardware. If LowBSB = 1, the sequence */
/* consists of all elements, and no more */
/* elements can be selected for hardware. */
if (LowBSB = 1) then {
/* Only this sequence can be selected */
if SeqSpeedup > BestSpeedup|g, a] then {
BestSpeedup|g,a] < SeqSpeedup;
BestChoice[g,a] — SLOWBSB,HighBSB;
}
}
else {
/* Also assume that the best solution for */
/* sequences up to LowBSB-1 */
/* on the remaining area is selected. */
if (SeqSpeedup +
BestSpeedup[LowBSB-1, a-SeqArea]) >
BestSpeedup[g, a] then {
BestSpeedup|g,a] < SeqSpeedup +
BestSpeedup[LowBSB-1, A-SeqAreal;

BestChoice[g,a] — SLOWBSB,HighBSB 3
}
}
}

/* For each area, now see if the best solution */
/* found for sequences without the element */
/* HighBSB is better than the solution just */
/* found for sequences with HighBSB. If so, */
/* replace the just found solutions with the */
/* previously found better solutions. */
if (HighBSB > 1)
for_all areas a = 0 to A do
if BestSpeedup[g-1, a] > BestSpeeduplg, a] then {
BestSpeeduplg, a] + BestSpeedup[g-1, a];
BestChoice[g, a] + BestChoice[g-1, a];

}
} /* for_all groups */
return BestChoice[], BestSpeedupl[];
} /* Algorithm */

Figure 22. PACE and reconstruct algorithm
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PACE-reconstruct (n, A,
BestSpeedup[], BestChoice[]) =

/* Initialization */
HwBSBList + {};
/* The best ezecution-time on the */
/* given area has been found. The */
/* same ezecution-time may be */
/* achievable for a smaller area. */
/* Reconstruct the sequences that */
/* lead to best execution-time, */
/* occupying the smallest area. */
AStart < 0;
Found <« false;
while (AStart <= A) and
not Found do {
if BestSpeedup[n, AStart] =
BestSpeedup[n, A] then
Found < true
else

AStart < AStart + 1;

/* The best starting entry has been */
/* found. Now reconstruct the */
/* sequences. */
a « Astart;
g« n;
repeat {
Seq + BestChoice[g, al;
if Seq <> {} then {
LowBSB < first index of Seq;
HighBSB < second index of Seq;
for BSB = LowBSB to HighBSB do
add BSB to HwBSBList;
a + a — area(Seq);
g < LowBSB — 1;

}

} until (a < 0) or (Seq = {}) or
(g =0);

return HwBSBList;

}
/* Algorithm */
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area granularity, 5. The n? term can be reduced by enlarging BSB granularity
by hierarchical collapsing or by only considering BSB sequences which induce a
speedup greater than zero (or greater than some given percentage). Also, there is
no need to precalculate areas and speedups for sequences whose total area will be
greater than A.

As for the simple Knapsack problem, the dual problem of minimizing area with
a fixed time-constraint can be solved by swapping the area- and speedup entries
calculated for each sequence. Another approach could be to scan the bottom line
of the BestSpeedup matrix from the left (see figure 21) until a entry is found which
violates the time-constraint, as the PACE algorithm in effect calculates the best
speedup for all areas.

Note that the areas and speedups of all sequences must be precalculated before
the algorithm can execute. This operation has time complexity O(n?2).

10.5. Partitioning the Straight Example

The example application has been partitioned with the partitioning tool in our tool
suite. The hardware allocation is one adder/subtracter and one multiplier. The
total hardware area is 1377 FPGA modules and the estimated hardware datapath
area is 811 FPGA modules which leaves 566 modules for BSB controllers. The
micro-processor is an MC68000.

Table 4. Partitioning results for the Straight example.

Partition algorithm System execution time Improvement Hardware controller area

PACE, adj. block comm. 302 1611% 510

11. Design Space Exploration with LYCOS

As explained in the introduction, the design space exploration phase requires re-
peated use of a partitioning algorithm because the best functional partition must
be found for every considered target architecture. Having found the best partition-
ing for each target architecture in terms of execution time, hardware area, etc., the
individual target architectures can be compared taking other criterias into account,
such as price, power consumption, etc., in order to choose the best suited target
architecture.

The design space can be very large (software processor, hardware chip, commu-
nication protocol, hardware configuration, etc., must be chosen). The partitioning
algorithm used in this phase must therefore be a fast one which unfortunately means
that it does not necessarily result in a functional partition which is as good as the
one a more accurate, but slower partitioning algorithm can produce. This is because
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fast partitioning algorithms typically use a simplified partitioning model where for
example functions are flattened, hardware/software communication overhead is ig-
nored or only estimated locally on BSB basis, hardware area calculated locally on
BSB basis disregarding hardware compiler optimizations over BSB boundaries, etc.

When the design space exploration phase has come up with one or several good
target architectures and corresponding partitions by using a fast partitioning algo-
rithm, a more advanced (and slower) partitioning algorithm can now be used (but
now only a single or few times) on this or these target architectures. This algo-
rithm may be a heuristic which can handle global aspects that the less accurate but
fast partitioning algorithm cannot. Examples are optimization for global commu-
nication using local hardware store, estimation of hardware interconnect (including
MUZXes, buses, etc.) and register area (which can only be done for whole hard-
ware partitions), estimation of global software compiler optimizations, analysis of
function calls, etc.

The more advanced algorithm results in a partition which, when evaluated in
accordance with the more advanced partitioning model it employs, will probably
turn out to be better than the partition the more simple partitioning algorithm came
up with (when evaluated in accordance with the same, more advanced partitioning
model). The best of the two partitions should now be chosen as basis for the
next phase which is heterogeneous code generation, i.e. generation of object code
and communication code for the software part of the partition and generation of
communication and calculation hardware for the hardware partition.

The partitioning and design space exploration tool [37] in the LYCOS system
provides for the design space exploration scheme described above by including sim-
ple and fast partitioning algorithms such as the Knapsack Stuffing algorithm [12]3
and the more advanced PACE algorithm. Heuristics which allow for more global
optimizations have not yet been implemented.

11.1. Comparing Different Partitioning Algorithms

This section describes various aspects of using partitioning algorithms which em-
ploy too simplified communication models. This is done by comparing the simple
Knapsack algorithm with the PACE algorithm.

The sample application used for these comparisons is a VHDL behavioral descrip-
tion, taken from an image processing application in optical flow [40]. The appli-
cation takes a sequence of satellite images of cloud movements used for weather
forecast and generates 10 new images in between each original image in order to
have a sequence with smooth cloud movements. The image processing consists
of three stages; extraction of motion invariants, local measurement of visual mo-
tion, and integration of local measurements in conjunction with a priori knowledge.
The application used in this paper is taken from the second stage which calculates
eigenvectors in order to obtain local orientation estimates for the cloud movements.
It consists of 448 lines of behavioral VHDL. The corresponding CDFG contains
1511 nodes and 1520 edges. BSB software execution-time is estimated for a 8086
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processor and a hardware library for an Actel ACT 3 FPGA is used to estimate
hardware datapath and controller area. Partitioning is performed for a sequence of
total hardware areas ranging from 1000 to 2000 in steps of 20, where an area unit
equals the area of a logic/sequential module in the FPGA. Table 5 summarizes the
characteristics of the most important modules.

Table 5. Area and execution-time estimates for hardware mod-
ules and operations.

Module Operations Area  Cycles
add-sub-comb  add, subtract, less, equal 97 1
mul-comb multiply 339 4
mul-ser multiply 103 16
div-comb divide 339 4
div-ser divide 103 16

1200000 T T T T T T T T

Knapsack algorithm - instantaneous communication ——
Knapsack algorithm - simple communication -
PACE algorithm - adjacent block communication -2--

1000000 B

800000 B

600000

Resulting clockcycles

400000

200000 EEDEE‘EEEEBEBBBBEBDBEE B
e

1200 1400 1600 1800 2000 2200 2400

Total chip area

1000

Figure 23. The PACE algorithm compared with Knapsack algorithms when the partitioning
results are evaluated according to the samme model as used for the partitioning.

Figure 23 shows the results of partitioning the sample application using three
different partitioning models (see figure 24); instantaneous communication, simple
communication where the read- and write-sets of a BSB are always transferred
regardless of other BSBs placed in hardware, and adjacent block communication
which is the one used by the PACE algorithm.
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Instantaneous Communication Simple Communication Adjacent Block Communication

Figure 24. The three partitioning models used in the partitioning algorithm comparison.

For chip areas less than the allocated area for the datapath (760 in figure 23 as
allocation A from table 6 is used), no speedup is obtained as no controller area
is available. As soon as controller area is available, the approach which assumes
instantaneous communication starts to move BSBs to hardware. For the approaches
that take communication into account, moving BSBs to hardware is not beneficial
before the total area reaches about 1040. It can be seen that as the chip area
increases, more and more BSBs are moved to hardware, thus, for large chip areas
there is less communication between hardware and software, hence PACE and the
approach assuming instantaneous communication become comparable. From the
figure it is clear that the approach using the simple communication model does
not move as many BSBs to hardware as the PACE which takes adjacent block
communication into account. This is mainly due to the fact that many of the BSBs
have a communication overhead which is larger than the speedup they induce.

Just comparing the curves of figure 23 may lead to the conclusion that assuming
instantaneous communication is the best approach. This is due to the fact that
the algorithm assumes that the partition will be implemented using instantaneous
communication. However, as this is unrealistic, the partitioning results will have to
be evaluated according to the most realistic implementation, i.e. using the adjacent
block communication model which assumes local hardware store. This results in
the curves shown in figure 25.

The first thing that is noted is, that even though the approach based on instanta-
neous communication in figure 23 “thinks” it is achieving a large speedup for areas
above 1000, it is actually producing worse than the all-software solution (as seen in
figure 25).

The experiments in this section have shown that the best results are (not surpris-
ingly) obtained by partitioning according to a model which resembles characteristics
of the target architecture, i.e. the adjacent block communication model, and that
the partitions which are produced by a partitioning algorithm which uses a sim-
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Figure 25. The PACE algorithm compared with Knapsack algorithms which assume instantaneous
communication or do not account for adjacent hardware block communication optimization. The
results are obtained using allocation A from table 6.

ple partitioning model should always be evaluated in accordance with a realistic
implementation model [38].

11.2. Design Space Exploration of Two Examples

This section describes experiments with the optical flow example and the Straight
example which illustrate how design space exploration is performed in LYCOS. The
experiments concentrate on the problem of selecting a good hardware configuration.
Of course the LYCOS system can also be used to experiment with different software
processors.

Figure 26 shows the results of partitioning the optical flow application with the
PACE algorithm for three different allocations; A, B and C, all listed in table 6.

Widely different results are obtained for given available areas, and a specific
allocation which is optimal for all areas cannot be found. Allocation C has the
smallest datapath area which means that for relatively small areas, the partitioning
algorithm is able to move BSBs to hardware and, thus, obtain the best partition.
Around the area 1500 this is changed, now allocation A becomes more attractive
due to the fact that the larger datapath allocation can benefit from the inherent
parallelism of the sample application, i.e. larger speedups may be achieved for the
individual BSBs. The figure also illustrates the problem of allocating too much
datapath area, leaving little area for BSB controllers, as allocation B which has the
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Table 6. Modules and corresponding
area for each of the three allocations.

Allocation
Module A B C

add-sub-comb 2 1 1

mul-comb 1 0 0
mul-ser 0 8 1
div-comb 1 0 0
div-ser 0 1 1
Area 760 1148 427

700000 T T T T
Al location A -—
R Al location B —+-
Allocation C -8--

600000 |- : X \ |
500000 |-

400000

Resul ting clockcycles

300000 [

200000

100000 L L L L
500 1000 1500 2000 2500
Total chip area

Figure 26. The PACE algorithm employed for different allocations.

largest datapath area never manages to give the best partitioning even for large
chip areas.

Figure 27 illustrates the controller/datapath area tradeoff when partitioning the
Straight example under hardware area constraints. The figure shows the all hard-
ware execution times for three different allocations, containing 1, 2 and 3 combi-
natorial multipliers respectively, and the corresponding obtained speedup. Going
from 1 to 2 multipliers results in a significant speedup which would be expected as
the all-hardware execution time is almost halved. However, the expected speedup
when adding an extra multiplier (reducing the all-hardware execution time further)
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Figure 27. Controller/datapath area trade-offs when partitioning under a hardware area contraint.

is not seen. Instead the speedup is reduced to around the same level as for a sin-
gle multiplier. The reason for this is of course that 3 multipliers allocate a large
fraction of the available hardware area, leaving only a small area for the controller,
and hence only a few BSBs can be moved to hardware.

12. Summary and Future Work

In this paper we have presented the LYCOS system which is an experimental co-
synthesis environment.

We have shown how LYCOS can be used for hardware/software partitioning of
an application onto a target architecture consisting of a single CPU and a single
hardware component. Given a C or VHDL specification of the application (a func-
tion/process), a set of typical inputs for this, a specification of the microprocessor
and a specification of the hardware library and allocation (number of available
hardware modules from the given hardware library), the partitioning tool comes
up with a partition which, according to a certain partition model, is found optimal
with respect to the execution time. LYCOS provides the choice between different
partition models and partitioning algorithms, one of which is a novel algorithm,
called PACE. It is characterized by recognizing that adjacent blocks placed in
hardware may share hardware modules as they execute in mutual exclusion and
may communicate variables directly between them without involving the software
side.

Finally, we illustrated how LYCOS can be used for design space exploration:
For a given application, in order to find the best target architecture (with respect
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to parameters like execution time, hardware area and price) the partitioning is
performed for many different target architectures (i.e. different specifications of
microprocessors, hardware libraries and allocations).

Topics for ongoing and future work are:

e the support of additional input specification languages like RSL and Synchro-
nized Transitions

o extension of the internal CDFG format such that more input language con-
structs can be translated

e multiple communicating processes

e more general target architectures than single CPU, single hardware processor
architectures

e code generation

The on-going and future activities and developments on the LYCOS system can
be watched at WWW, http://www.it.dtu.dk/ lycos.
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Notes

”\” is the normal set difference operator.
2. len(X) returns the number of elements in the list X.

3. The Knapsack Stuffing algorithm can be used without modification in the LYCOS system as
only leaf BSBs which can always be moved to/from hardware independently of each other are
considered (see figure 13 on page 17).
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