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  Abstract

This paper presents a software-hardware based simulation approach to digital system sim-
ulation. Our approach provides better performance than a software only approach and also
works with high-level system models. The approach uses an optimizing simulation com-
piler to transform a hardware description language system model into a high performance
simulator. The target architecture for the simulation compiler is a tightly coupled proces-
sor and field-programmable gate array (FPGA). The components of the simulation com-
piler are a high performance compiled-code software simulator, an automatic partitioner
that partitions the system model between the processor and FPGA, and a scheduler that
maximizes concurrent execution within the FPGA and between the FPGA and processor.
We describe these components and show how they can be used to improve the perfor-
mance of synchronous digital system simulation by up to a factor of two when compared
to a high performance all software simulator.

1.0  Introduction

Simulation is used extensively to evaluate performance and to verify correctness of digital
systems. As system designs become more complex, the level at which the system is ini-
tially specified is made more abstract in order to manage the complexity. Simulation tech-
niques must keep up with these upward shifts in the abstraction level to ensure that
systems designers can efficiently evaluate the performance and correctness of their ideas
as early as possible in the design process. Recently, there has been a trend towards speci-
fying systems using hardware description languages (HDLs). This trend is partly due to
the widespread acceptance of logic synthesis tools and, to a lesser extent, high-level syn-
thesis tools. This trend, coupled with the much greater demand for simulation perfor-
mance resulting from the increase in system complexity, motivates the need for new
simulation techniques that are optimized to simulate high-level system models as effi-
ciently and as economically as possible.

In this paper we describe and evaluate a simulation approach that converts an HDL model
into a high-performance simulator consisting of tightly coupled software and hardware
components that execute on processor and FPGA architecture. Our approach uses com-
piled-code software simulation, accurate performance estimation, logic synthesis, soft-
ware-hardware partitioning, and software-hardware scheduling to generate these
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components. The remainder of the paper is organized as follows. In the next section we
provide an overview of our simulation approach. Section3.0 presents related work.
Section4.0 describes the compiled-code software simulator. Section5.0 describes the
hardware compilation process. Section6.0 describes algorithms for scheduling and parti-
tioning the software and hardware components. Section7.0 presents performance results,
and Section8.0 presents conclusions and areas of future research.

2.0  A Software-Hardware Simulator

Software-hardware simulation of HDL models has two components: a system architecture
and a simulation compiler. The system architecture must be a good target for compiled
HDL models and the simulation compiler must be optimized to make the HDL models
simulate efficiently on the target architecture. In this section we give an overview of our
simulation architecture and compiler.

2.1  Simulation Architecture

The target architecture is shown in Figure1. The processor has one or more FPGA chips
connected by the same bus as the processor cache. This implementation detail is important
because it means that the communication latency and bandwidth between the processor
and cache and between the processor and FPGA chips are comparable. The FPGA chips
accelerate HDL simulation in two ways. Firstly, the FPGAs can accelerate parts of the
HDL model that take less time to execute in an FPGA than in a general purpose CPU.
Control sections of HDL models typically fall into this class. Secondly, the parallel execu-
tion among the CPU-based and FPGA-based parts of the HDL model accelerates simula-
tion even further.

The primary purpose of the FPGAs are to accelerate simulation. However, the simulation
architecture could also be used as the control and data manipulation processor in an
embedded system. In such a system, the FPGAs might also serve as the interface logic to
sensors and actuators. For certain applications, this system might provide sufficient perfor-

Figure 1. The simulation architecture.
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mance such that the simulator itself could be used in place of a custom hardware imple-
mentation.

2.2  Simulation Compiler

The overall goal of the simulation compiler is to produce software and hardware compo-
nents that execute efficiently on the target architecture. Figure1 shows an overview of the
simulation compiler. The input to the compiler is an HDL system specification. This spec-
ification is converted into an intermediate form represented by a hybrid abstract-syntax
tree and a dataflow graph. Analysis of the synchronization and data dependencies in the
intermediate form is used to extract the concurrency in the specification. This information
enables us to generate software-only and mostly hardware versions of the simulator. By
accurately estimating the performance of these two versions of the simulator, we deter-
mine the execution time of a particular part of the HDL model in hardware or in software.
This data provides the basis for partitioning the model between the CPU and the FPGA.
The partitioning and scheduling algorithms attempt to maximize performance with a given
number of FPGA chips. Parts assigned to the FPGA should result in an execution schedule
with the shortest execution time while not exceeding FPGA chip limitations.

System Specification

Dataflow analysis
Synchronization analysis
Parallelism detection

Software-hardware
performance estimation

Software-hardware
partitioning and scheduling

CPU FPGA

Figure 2. The simulation compiler.
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One of the key features of the simulation compiler is that it is capable of producing effi-
cient simulators for a single processor, or for a processor and FPGA; furthermore, the
compiler will optimize the simulator for the number of gates in the FPGA chips. This pro-
vides a flexible way to change the cost/performance of the simulator by varying the num-
ber of FPGA chips.

3.0  Related Work

Previous work in the area of software/hardware co-synthesis has focused on the design of
embedded systems. The following discussion of previous work will be limited to those co-
synthesis approaches that start with a single program specification of the system and per-
form the partitioning between software and hardware automatically.

In the Cosyma system [7] the functionality of the system to be synthesized is described in
a superset of C called Cx. Cx extends C with timing constraints and tasks. The target archi-
tecture of the Cosyma system is a micro-controller and co-processor that communicate via
a shared memory. Cosyma maps a Cx description onto the target architecture by assigning
basic blocks of the description to run in software on processor or in hardware on the co-
processor. The partitioning is based on a cost-function that includes the estimated benefits
of moving a particular block from software to hardware and the estimated communication
cost. The actual partitioning is performed using a simulated annealing algorithm.

The advantage of the Cosyma approach is that the use of a general purpose programming
language makes it easy to describe complex systems. However, because the approach does
not currently overlap the execution of the micro-controller and the co-processor, it does
not exploit one of the main performance enhancements possible with a co-processor. Fur-
thermore, the use of estimates of software performance does not accurately account for the
effects of an optimizing compiler on the performance of the software. This results in soft-
ware-hardware systems with poor speedup and sometimes a slowdown over the software-
only system.

The approach presented by Gupta and De Micheli [9] is similar to the approach presented
in this paper. The approach uses a hardware description language, HardwareC, to specify
the system description. Hardware C includes program constructs for specifying delay and
execution rate constraints as well as constructs for explicitly expressing concurrency. The
goal of the system is to reduce the cost of implementing a system using an ASIC by com-
bining an off-the-shelf microprocessor and an ASIC. The automatic partitioning is accom-
plished by starting with an initial partition in which all program constructs with
unspecified delay are in software and the rest are placed in hardware. An iterative
improvement algorithm moves operations from hardware to software to reduce the cost of
the system while meeting the delay and rate constraints. As in the Cosyma system, the per-
formance of the software is only estimated without actually executing the code. This sort
of software performance estimation makes it difficult to get an accurate measure of soft-
ware performance and does not include the effects of optimizing compiler technology.
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4.0  Software Compilation and Performance Estimation

This section describes the software simulation compiler, the starting point of our co-syn-
thesis approach. We first discuss the algorithms used by the compiler and then follow with
an example showing the compilation of a very simple HDL model.

Software generation is accomplished with a Verilog to C compiler (VCC) that compiles a
Verilog HDL model into a C program. Verilog has been designed for fast event-driven
simulation, and contains constructs that have no clear analogues in hardware or procedural
programming languages. By restricting the Verilog programs that VCC will accept to
those that describe synchronous digital systems, we guarantee that the Verilog program
can be compiled by VCC. The output of VCC is a statically scheduled C program that has
the same behavior as the Verilog model running on a event-driven Verilog simulator but
achieves much higher simulation performance. There has been previous work in compiled
code simulation [4, 10, 12] which was based on input descriptions that were gate-level
netlist representations of circuits [4, 12] or RTL models in a simple description language
[10]. VCC advances the work in compiled code simulation because it generates a com-
piled code simulator from Verilog. Compiling Verilog programs requires a significant
amount of analysis that is not required for input descriptions with simple execution
semantics. VCC must perform this analysis even though it cannot compile the complete
Verilog language.

The analysis performed during the VCC compilation process has three main steps:

1. Dataflow graph construction parses the Verilog program and produces a dataflow graph
that is combined with an abstract syntax tree.

2. Static scheduling analyzes the dataflow graph and generates an execution schedule for
the graph that preserves the semantics of the Verilog program

3. C code generation produces C code.

We describe these steps in more detail in the following sections.

4.1  Dataflow Graph Construction

The input to VCC is a synchronous Verilog description. Verilog programs have a syntax
that is similar to C, but semantics which are very different. Verilog programs are com-
posed ofmodules. These modules may be instantiated inside of other modules to create a
hierarchy that represents the structure of the hardware system. In our Verilog programs,
modules contain two types of concurrent process statements or concurrent blocks; these
arealways-blocks andcontinuous-assignments. An always-block is a group of statements
with sequential semantics that executes whenever an event occurs that is in the block’s
activation list. A continuous-assignment is an assignment whose left hand side continu-
ously reflects the current state of the variables on the right hand side.

The dataflow graph is created by parsing the Verilog program, flattening the hierarchy, and
creating a directed graph. The vertices of the graph represent variables, always-blocks or
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continuous-assignments. The edges of the graph represent uses or definitions of the vari-
ables. There is a directed edge between a variable vertex and a concurrent block vertex for
each variable that appears on the right hand side of a continuous assignment or in the acti-
vation list of an always-block. There is also a directed edge between each concurrent
block vertex and each variable vertex that is assigned in a concurrent block.

4.2  Static Scheduling

To make static scheduling of the concurrent blocks possible, the potentially cyclic data-
flow graph must be converted into a directed acyclic graph (DAG). A DAG is created by
breaking the feedback loops in the dataflow graph at the clock signals. Clock signals are
identified as variables that appear in a special always block named “clock.” This clock
block also defines the clock signal transitions and is the only block that can contain delay
statements. Every always-block in the program is dependent upon at least one clock signal
transition. The always-block vertices and continuous-assignment vertices associated with
a transition must form a DAG in the dataflow graph. If they do not form a DAG then no
static schedule of blocks is feasible; VCC will reject the Verilog program.

A schedule for the process statements is generated by selecting the first clock transition in
the clock-block. The effect of this transition on other signals is propagated by constant
propagation of the transition to all the dependent blocks. in the dataflow graph [2]. The
always-blocks and continuous assignments that are fired directly or indirectly by the tran-
sition are then scheduled by topologically sorting the dataflow graph [6]. This process is
repeated for all the clock transitions in the clock block.

4.3  C Code Generation

VCC attempts to generate C code that has as little run time as possible. To achieve this, C
code is generated so that it can be optimized by the C compiler. VCC performs optimiza-
tions such as packing multi-bit signals into a single machine word and eliminating bit field
selection that require specific knowledge of Verilog semantics. Standard C compiler opti-
mizations like constant propagation, dead-code elimination and common sub-expression
evaluation are left for the C compiler. However, VCC does perform a substantial amount
of copy propagation to eliminate redundant assignments resulting from the structural hier-
archy in the model. C code is generated by emitting the code for a clock transition and for
each of concurrent blocks appearing in the static schedule for that clock transition. This
process is repeated until code has been generated for all the clock transitions.
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4.4  A Simple Example

Figure3 shows a simple Verilog description of a clocked state machine. It has a single
module calledtop  which contains an initial block and two always-blocks. The initial-
block initializes the variablestate . The specialclock  always-block defines the clock
signalphi1 , and thestate_machine  always-block is activated on the positive edge of
phi1.

Figure4 shows the dataflow graph that corresponds to the state machine description. The
clock  always-block defines thephi1  variable which is used by thestate_machine
always-block. Thestate_machine  always-block defines thestate  variable. This
dataflow graph is already a DAG; thus, scheduling the evaluation of the vertices is
straightforward. The C code that results from the scheduling and code generation phases is
shown in Figure5.

module top();
reg [1:0] state;
reg phi1;

initial
state = 2'b00;

always
begin clock

phi1 = 0;
 #5
 phi1 = 1;
 #5
end

always @(posedge phi1)
begin state_machine

case (state)
2'b00: state = 2'b01;
2'b01: state = 2'b10;
2'b10: state = 2'b11;
2'b11: state = 2'b00;

endcase
end

endmodule

Figure 3. A simple Verilog description of a clocked state machine.
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4.5  Software Performance Estimation

The performance of the all-software based simulator is impressive. On the Verilog models
we have experimented with we are able to achieve speedups of between 150–300 times

Figure 4. The dataflow graph for the sate machine description.

Clock

phi1

state_machine

state

Figure 5. The C code for the state machine description.

#include <stdio.h>

struct top_s {
 unsigned long phi1;
 unsigned long state;
};

struct top_s top;

main() {

 initial ();
 simulate ();

}

void initial () {

 top.state = 0;
}

void simulate () {

while (1) {
top.phi1 = 0;
top.phi1 = 1;
switch (top.state) {

    case 3:
      top.state = 0;
      break;
    case 2:
      top.state = 3;
      break;
    case 1:
      top.state = 2;
      break;
    case 0:
      top.state = 1;
      break;

}
}

}
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faster than Verilog-XL1.6 [5]. Experience with this simulator indicates there are software
optimizations that will further improve Verilog simulation performance; however, the
focus here is on the additional performance improvements that are possible using soft-
ware-hardware co-synthesis.

The granularity for partitioning into software or hardware is a block of Verilog code that
does not contain any event-control. This ensures that a block assigned to hardware will
execute to completion without requiring any intermediate communication with blocks
running in software. Event-control-free blocks include continuous assignment blocks and
simple always blocks. Even though our system cannot directly handle complex always
blocks with nested event control, these types of blocks can be handled by splitting them
into event-control free components. In the rest of the paper, blocks will be used to refer to
event-control free components.

The purpose of software estimation is to provide the average execution time and the short-
est execution time of the C code associated with each block. This requires a careful analy-
sis of the object code produced by the C compiler for the C statements associated with
each Verilog block. To make this feasible, interleaving of statements from different blocks
is disallowed, and compiler optimizations are restricted in scope. In practice, most com-
piler optimizations are unaffected, and the resulting code is almost as fast.

Profiling of the software simulator is used to estimate the average execution time of the
statements associated with each Verilog block. Profiling is more accurate than static esti-
mation because it captures the dynamic frequencies with which branches are taken in the
code. To ensure that profiling provides accurate performance estimates, the behavior of the
model should accurately reflect the real behavior of the model. This requires the use of
large and varied input data sets during profiling. If efficient profiling techniques are not
used the collecting this information could take a very long time.

The profiling technique used to obtain the average software execution time is the object
code annotation toolpixie [13]. This tool captures the dynamic execution frequencies for
each basic block in the object code. By analyzing the execution time of each basic block
on the target processor architecture and multiplying this time by the execution frequency
of the block, an exact count of the number cycles executed by each basic block can be
found. This profiling technique is very efficient; it slows down program execution time by
only a factor of four. This technique also accurately accounts for pipeline stalls; however,
it does not account for the performance of the memory hierarchy. The software execution
time of each block can be calculated by adding up the execution cycles for all the basic
blocks in the object code that are associated with the block.

To estimate memory-hierarchy performance, pixie is used to generate an address trace.
This address trace is used to drive a cache simulator that models the processor memory-
hierarchy performance. However, unlike CPU performance, it is almost impossible to
assign the time spent in the memory hierarchy to individual blocks. Fortunately, in our
experiments, performance losses in the memory hierarchy were small. We suspect that
with much larger models the memory hierarchy could have a significant effect on the soft-
ware performance.
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To determine the shortest execution time of a block, the object code produced for the
block is analyzed in detail. The shortest path-length through the block is determined by
assuming that all instructions execute in one cycle and by finding the sequence of taken or
untaken branches that minimizes the number of instructions executed in the block.

5.0  Hardware Synthesis and Performance Estimation

The hardware portion of the software-hardware simulator is implemented with Field Pro-
grammable Gate Arrays (FPGA). FPGA’s are an ideal implementation medium for simula-
tion because they allow the design to be changed easily. The Xilinx FPGAs used in our
experiments consist of an array of configurable logic blocks (CLBs) that are intercon-
nected by a hierarchy of routing channels, and surrounded by a perimeter of programma-
ble Input/Output Blocks (IOB) [15]. In the remainder of this section, we describe the
procedure for implementing a Verilog HDL model with FPGAs. We begin by explaining
the interface between the processor and the FPGA chips and the internal organization of
each of the FPGA chips.

5.1  The Processor/FPGA Interface

With current FPGA densities it is possible to emulate complex logic designs on a single
FPGA; however, many of these implementations cannot fully utilize the FPGA gates
because there are insufficient I/O pins [3]. To overcome this problem, we have designed a
memory-style interface in which the FPGA chips communicate with the CPU over com-
mon address and data busses. Figure6 shows a block diagram of the interface between the
functional units in the FPGA and the CPU. The FPGA is organized as a register file which
feeds independent functional units that implement the operation of a particular block. The
registers contain the operands for the functional units. Because the functional units are

FU1
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FUnInput Registers

Address
Decoder

Address bus

Data bus

FPGA

•
•
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•
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•••
�����

DataOut

DataInCPU

Figure 6. The internal structure of the FPGA and the interface between the FPGA
and the processor.
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independent, once the operands have been loaded all functional units can operate in paral-
lel. Even though the data bus is 32 bits wide, the number of bits in each register corre-
sponds to the width of the input operand it contains. In addition, functional units with
common input operands can share registers. The variable register bit widths and register
sharing among functional units reduces the FPGA resources needed to implement this
organization.

To activate a particular functional unit, the CPU places the data on the data bus, then
places the address of the register on the address bus. The decoder in the FPGA will turn
the internal data bus into an input bus, and enable the addressed register to latch the data
on the bus. After the functional unit has completed execution, the CPU can read the output
by applying the address of the appropriate output. The decoder will enable the addressed
tri-state bus and drive the output from the internal bus onto the data bus. Since the FPGA
is based on SRAM technology, we assume that the time it takes to read or write one of the
registers in the FPGA is on the same order as an SRAM chip access time. With a 50 MHz
CPU, we allot one clock cycle for each CPU-to-FPGA access.

5.2  Hardware Synthesis and Performance Estimation

Logic synthesis tools from Synopsys are used to convert Verilog blocks into FPGA hard-
ware [14]. The input description to the synthesizer for each block includes the interface
logic that will be connected to it on the FPGA. This ensures that the area and critical path
delay estimates reported by the synthesizer represent the true costs of placing the block in
an FPGA chip. The synthesizer reports the area cost in terms of CLBs and the critical path
delay in nanoseconds for each synthesized block. To minimize the synthesizers run time,
no timing or area constraints are used. Without these constraints, the FPGA synthesizer
does not optimize the blocks for speed or area. To account for the delay of routing wires,
which represents a large fraction of the delay in an FPGA, before the CLBs have been
placed and routed, the FPGA synthesizer uses a statistical approximation method based on
a simple wire load model.

The synthesis tools are not able to synthesize all blocks. The synthesizer is designed to
translate register transfer level descriptions into gate level descriptions and it is unable to
handle certain behavioral Verilog statements. Our verilog models are intended for simula-
tion and consist mainly of behavioral code; inevitably there are certain blocks for which
the synthesizer is unable to find a gate level description. Although a high-level synthesizer
would be less restrictive in the types of Verilog statements it could translate, it too would
not be able to completely translate all Verilog programs to hardware since Verilog can be
used to describe systems that do not have any reasonable all-hardware representation.
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6.0  Software-Hardware Cosynthesis

Once the execution times for all blocks in both software and hardware and the area cost in
hardware for all blocks have been determined, each block must be placed in either hard-
ware or software so that the overall execution time of the simulation is minimized. This is
a difficult problem because it requires the combined solution of partitioning and schedul-
ing sub-problems.

The partitioning of blocks between software and hardware affects scheduling in two ways.
Firstly, the time required for a block to execute depends on whether the block is placed in
software or hardware. Secondly, the execution overlap among hardware blocks, and
between software and hardware blocks depends on the placement of all blocks. This
makes it difficult to evaluate the performance of a particular partition without considering
scheduling at the same time. Yet, it is impossible to produce an execution schedule with-
out first selecting a partition.

Our solution to this aspect of the cosynthesis problem is to efficiently find a near optimal
solution to the scheduling sub-problem and then to use this scheduling algorithm in the
inner loop of an iterative partitioning algorithm. The algorithms for scheduling and parti-
tioning are described in the following sections.

6.1  Software-Hardware Scheduling

Software-hardware scheduling creates an execution schedule that minimizes execution
time. The algorithm starts with a predetermined partition of blocks between hardware and
software and uses the dataflow-graph generated by VCC to produce a schedule for the
CPU. At any point during a simulation, the CPU can be in one of four states: executing a
software block, writing arguments to a hardware block, reading results from a hardware
block, or waiting for a hardware block to finish. Our software-hardware scheduling algo-
rithm attempts to find an execution order for hardware and software blocks that minimizes
the time the CPU spends in the waiting-for-hardware-blocks-to-finish state. Since the
amount of CPU time spent in the other three states is fixed, minimizing the time spent in
the waiting-for-hardware state also minimizes the total execution time.

The dataflow constraints between blocks restrict the order in which blocks can be exe-
cuted. The CPU imposes an order on the execution of blocks which satisfies these restric-
tions, since each block is either executed entirely by the CPU or has it arguments written
by the CPU and its results read back by the CPU. Software blocks have their execution
serialized by the CPU and thus are easily ordered. Hardware blocks, however, execute in
parallel with each other and asynchronously. The CPU enforces a correct order of execu-
tion for hardware blocks by serializingcommunication with the FPGA. Time spent by the
CPU in the waiting-for-hardware state is minimized by maximizing the parallelexecution
among hardware blocks and between software and hardware blocks.

Finding the optimal solution to the software-hardware scheduling problem is intractable;
however, for the problems encountered in practice our algorithm, using simple heuristics,
quickly finds near-optimal approximate solutions. Since the optimal solution can be no
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better than a solution in which the CPU is never in the waiting-for-hardware state, it is
possible to bound the error between our approximate solution and the optimal solution.

Our scheduling algorithm makes the following assumptions:

1. Once a software block has begun execution, it is allowed to finish without interruption.
The execution of a software block cannot be interrupted in order to read the results
from the FPGA or to write arguments to the FPGA.

2. Where necessary, NOPs are used to ensure that the CPU never reads results from the
FPGA prematurely. These NOPs are executed regardless of the dynamic execution
behavior of software blocks.

3. CPU to FPGA reads and writes always take two cycles. The two cycles is a result of
assuming that in addition to the one cycle transfer time between the CPU and FPGA,
the CPU also has to load the argument from or store the result in memory. While there
are cases where another instruction must be executed to calculate the source or destina-
tion address, there are also cases where a load or store between the CPU and memory is
not necessary because the value is already in the register file or is immediately used by
the CPU.

4. A 50MHz CPU clock frequency is used to calculate the number of cycles hardware
blocks take to execute.

6.1.1  Scheduling Algorithm

The basis of the simple algorithm used to schedule the software and hardware blocks is list
scheduling [1]. List scheduling is computationally cheap and an effective technique for a
large class of problems [8]. If at a any point it is possible to communicate the arguments
for more than one hardware block, then priority is given to the hardware block with the
longest execution time. The rationale for this heuristic is to allow the slowest hardware
blocks to execute while the CPU is communicating arguments to the FPGA and reading
back results for the faster hardware blocks. For software blocks, which execute serially,
priority is given to those with more descendents in hardware. This is done to promote
maximum parallelism between hardware blocks.

Our algorithm maintains three sets: a set of unscheduled blocks (), a set of executing
blocks ( ) and a set of scheduled blocks (). Listed below is the pseudo-code:

= {set of all blocks};
= ;
= ;
= ;

Pred(x) ::= { | block y is a predecessor of block x};
t = 0;

while ( ) {
forall  ordered by execution time {

if (  && x is a hardware block) {
schedule CPU to write arguments for x;

Sun

Sex Ssch

Sall
Sun Sall
Sex ∅
Ssch ∅

y Sall∈

Ssch Sall⊂
x Sun∈
Pred x( ) Ssch⊆
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t = t + (time to write arguments for x);
;
;

x.time when execution finishes = t + (time for x to execute);
}

}
if (  where (x.time when execution ) {

schedule CPU to read results from x;
t = t + (time to read results from x);

;
;

}
else if (  where  && x is a software block) {

schedule CPU to execute x;
t = t + (shortest time to execute x);

;
;

}
else {

= min{x.time when execution finishes | } - t;
schedule CPU to wait  seconds for hardware;
t = t + ;

}
}

Software-blocks require a variable number of cycles to execute; their execution time is
dependent on dynamic arguments. As discussed inSection4.5, the shortest execution time
in software and the average execution time in software are determined for each block. To
guarantee that the results from hardware blocks are never read before they are available,
the scheduler assumes that software blocks always execute in the shortest possible time.
While this pessimistic assumption may result in the CPU spending more time waiting for
hardware, in practise we found it has little effect. The average schedule length can be cal-
culated by using the average execution times for software-blocks that appear in the final
schedule.

6.1.2  Scheduling Results

Despite the relative simplicity of our scheduling algorithm, it produced close to optimal
schedules for the examples we considered. Table1 is a breakdown of processor time for
the state machine, the unpipelined CPU, and the pipelined CPU models scheduled assum-
ing unlimited hardware resources. (These models are described in detail in Section7.0.)

Software
Execution

Software-
Hardware

Communication
Waiting for
Hardware

State machine 83.3% 16.7% 0.0%

Unpipelined CPU 29.0% 70.1% 0.9%

Pipelined CPU 52.5% 46.8% 0.7%

Table 1. A breakdown of best execution times with unlimited hardware

Sun Sun x{ }−=
Sex Sex x{ }∪=

x Sex∈( )∃ finishes t≤

Sex Sex x{ }−=
Ssch Ssch x{ }∪=

x Sun∈( )∃ Pred x( ) Ssch⊆

Sun Sun x{ }−=
Ssch Ssch x{ }∪=

ti dl e x Sex∈
ti dl e

ti dl e
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Table1 shows that the CPU spends almost no time waiting for hardware blocks to finish
executing and thus the schedules produced are very close to optimal. The success of our
scheduling algorithm is due in part to the nature of the Verilog models we experimented
with. They have plenty of explicit parallelism and very few data-dependencies between
blocks.

6.2  Software-Hardware Partitioning

The software-hardware partitioning algorithm assigns each block to either software or
hardware so that overall execution time is minimized. The algorithm has two phases: ini-
tial partition construction and partition improvement. These phases are described in detail
below.

To guide the construction of a partition the average software execution time (), hard-
ware execution time ( ), and software-hardware communication time () for each
block are used to divide the blocks into three sets. The members of each set are determined
by the following three inequalities:

1.

2.

3.

Blocks that satisfy the first inequality are assigned to the software set (). These blocks
can never benefit from being placed in hardware. Blocks that cannot be synthesized into
hardware also belong to this set. Blocks that satisfy the second inequality are assigned to
the hardware set ( ). The execution time will always improve if these blocks are imple-
mented in hardware. Blocks that satisfy the third inequality are assigned to the software-
hardware set ( ). The effect on the execution time due to the placement of these
blocks can be either beneficial or detrimental depending on the placement of other blocks.

The first phase of the partitioning algorithm constructs an initial partition using the three
sets of blocks and constrained by the amount of FPGA resources available. The software
set blocks are immediately assigned to software. Initially the hardware and software-hard-
ware blocks are also placed in software. The partitioning algorithm then tries moving each
of the hardware and software-hardware blocks into hardware and measures the improve-
ment in execution time after each move. The block that resulted in the greatest speedup
when it was the only block in hardware is assigned to hardware. The process then repeats;
each of the remaining unassigned hardware and software-hardware blocks are again
moved into hardware. The block that resulted in the greatest speed up when it was moved
into hardware along with the block already fixed there is itself fixed in hardware. This pro-
cess iterates until either no moves result in an improved execution time or until no more
blocks can fit in the FPGA. The pseudo-code for this phase of the algorithm is given
below:

= ;
= ;
 = ;

tSW
tHW tcom

tcom tSW>

tSW tHW tcom+>

tHW tcom+ tSW> tcom>

Ssw

Shw

Shw sw∨

Sfixed in− sw− Ssw
Sfixed in− hw− ∅
Splaced in− sw− Shw Shw sw∨∪



16

Schedule( , )::= the execution time for the partition;
Measure(execution time, fpga area) ::= best time- execution time;
available fpga area =Size of FPGA in CLBs;
best area = 0;
best measure = Measure(Schedule( , ), 0);

repeat {
best move = ;
forall  where (x.fpga area < available fpga area){

current time = Schedule( , );
if (Measure(current time, x.fpga area)> best measure){

best move = {x};
best area = x.fpga area;
best measure = Measure(current time, x.fpga area);

}
}

move;
move;

best time= Schedule( move, move);
best measure = 0;

} until (best move == )

The second phase of the partitioning algorithm iteratively improves upon the initial parti-
tion. Each block from thefixed-in-hardware set is moved back into theplaced-in-software
set. The moved block is kept in software as the algorithm from the first phase tries moving
other blocks from theplaced-in-software set into hardware to fill the space just vacated.
The partition that results in the greatest speedup is used as the new initial partition, and the
procedure is repeated. This second phase finishes when a partition is found where no sin-
gle element can be removed from thefixed-in-hardware set without degrading perfor-
mance. Since a shorter execution schedule is being found on each iteration, the algorithm
is guaranteed to eventually converge on a locally optimal solution. While theoretically this
convergence could be slow, it was quite rapid for our example models.

To determine the sensitivity of the final solution to the criterion used to select blocks for
movement into thefixed-in-hardware set, we experimented with several different heuris-
tics. In addition to using the “best-improvement” measure given in the pseudo-code
above, we also experimented with “smallest-block” and “best-improvement-per-CLB”
measures. The pseudo-code for these measures is given below.

“smallest-block” measure:

Measure(execution time, fpga area) = 1 / fpga area;

“best-improvement-per-CLB” measure:

Measure(execution time, fpga area) = (best time- execution time)/ fpga area;

As we will show in the results section, these heuristics do not significantly affect the parti-
tion that the iterative improvement algorithm converges on.

HWblocks SWblocks

∅ Ssw Shw Shw sw∨∪ ∪

∅
x Splaced in− sw−∈

Sf i xed in− hw− x{ }∪ Sf i xed in− sw− Splaced in− sw−∪( ) x{ }−

Sf i xed in− hw− Sf i xed in− hw− best∪=
Splaced in− sw− Splaced in− sw− best−=

Sf i xed in− hw− best∪ Sf i xed in− sw− Splaced in− sw−∪( ) best−

∅



17

7.0  Performance Results

The performance results from experiments with our software-hardware simulation com-
piler are modest. The Verilog example programs we have experimented with range in
complexity from a simple state machine, similar to the one shown in Figure3, to a pipe-
lined processor that executes a subset of the MIPS instruction set architecture (ISA) [11].
Table2 shows the key characteristics of the three Verilog example programs. The first pro-
gram models a simple state machine. The second program is an unpipelined CPU that exe-
cutes a subset of the MIPS ISA. The last program is a pipelined version of the same CPU.

Speedups were calculated by comparing the execution times for the all-software simula-
tions compiled with full compiler optimizations to the execution times for the software-
hardware simulations as estimated using the profiling data gathered in Section4.5.

Assuming unlimited FPGA resources, our co-synthesis approach achieves speedups over
the all-software simulator ranging from 1.07 for the trivial state machine to 2.04 and 2.76
for the CPUs. For the unpipelined model the results of our algorithm were compared with
the optimal result found through exhaustive search; the two results were the same. These
speedups represent the maximum speedup possible with our proposed approach. The
speedups are somewhat low because the all-software implementation was able to benefit
from compiler optimizations that we did not incorporate into the software-hardware
implementations. The software-hardware implementations are up to four times faster than
an unoptimized all-software implementation.

For the limited FPGA resources case, we present the results of experiments that vary the
amount of FPGA resources and the heuristic used to generate the partition. These results
show how the speedup of the software-hardware approach is related to the amount of
FPGA resources available and how the speedup achieved by the iterative improvement
partitioning algorithm is affected by the heuristic used.

Lines of
Verilog code

Number
of blocks

State machine 56 4

CPU 1417 37

Pipelined CPU 1652 48

Table 2. Characteristics of Verilog test programs.

Number of
CLBs

Speedup
over

software

State machine 21 1.07

Unpipelined CPU 1013 2.76

Pipelined CPU 1174 2.04

Table 3. Software-hardware simulation performance with unlimited hardware.
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Figure 7 and Figure 8 show the speedup versus number of CLBs of the unpipelined and
pipelined CPU models using the three heuristics described in Section 6.2. Most of the
speedup of the software-hardware simulator is achieved with a small number of CLBs. For
the unpipelined CPU model a factor of 2.07 speedup is achieved with 200 CLBs. Using
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Figure 7. Speedup versus number of CLBs for the unpipelined CPU model using
different heuristics for partitioning.
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different heuristics for partitioning.
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six times as many CLBs only increases the speedup to 2.76. Similarly for the pipelined
model a factor of 1.663 speedup is achieved with 196 CLBs. Using 1174 CLBs only
increases the speedup to 2.031. Today, medium size FPGAs contain 250 CLBs. The larg-
est FPGAs currently available have 600 CLBs.

Figure7 also compares the performance of the different heuristics used by the iterative
improvement partitioning algorithm. “Best-improvement-per-CLB” and “best-improve-
ment” have nearly identical results, while “smallest-fit” performs slightly worse. This
indicates that the iterative improvement algorithm is relatively insensitive to the heuristic
used, but that a performance directed heuristic is preferable to one that conserves FPGA
resources.

Figure9 and Figure10 provide a breakdown of CPU execution time for the unpipelined
and pipelined CPU models. As the number of CLBs used increases, the ratio of time spent
communicating between the CPU and the FPGAs increases, limiting the speedup gained
by placing more blocks in hardware. The ratio of CPU time devoted to communication
increases as more blocks are added to hardware both because more communication is
required and because fewer blocks are being executed in software.

For the unpipelined model the ratio of time spent communicating increases from 23.4%
with 200 CLBs to 70.1% with 1013 CLBs. This sharp increase in communication time
negates most of the benefits of the extra hardware. For the pipelined model the ratio
increases from 12.3% with 196 CLBs to 46.7% with 1174 CLBs.
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Figure 9. CPU execution time broken down into categories for the unpipelined CPU
using the “best-improvement” heuristic.
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8.0  Conclusions and Future Work

This paper has described a fully automated software-hardware cosynthesis approach to the
simulation of Verilog HDL models. Our approach is based on accurate measurements of
execution times in software and hardware. This allows the performance benefits of placing
a block in hardware or software to be accurately evaluated. By combining partitioning
with an efficient scheduling algorithm we are able to place blocks in hardware or software
so that performance is maximized. For the case of unlimited FPGA hardware our parti-
tioning algorithm produced an optimal partition for all the models that we experimented
with. Our results show that using these techniques we can achieve modest, but significant
speedups over all-software simulation. Furthermore, in our experiments most of the per-
formance benefits of a software-hardware simulator were achieved with a single FPGA
chip.

There are areas in which our approach requires further refinement. The results of
Section6.1.2 show that communication severely limited the speedup possible with more
FPGA resources; communication costs significantly degraded the performance of our soft-
ware-hardware simulator. Thus we see reducing communication overhead as an important
goal.

To reduce communication overhead, the partitioning algorithm could be enhanced by
using the dataflow analysis from VCC to partition blocks between software and hardware
such that communication is considered and minimized where beneficial. Ideally, once the
CPU has written an argument to the FPGA we would like that argument to reused by as
many hardware blocks as possible. Furthermore, we would like to place blocks in the
FPGA so that the results of one hardware block can be passed as arguments to another
hardware block without requiring intervention from the CPU.
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Figure 10. CPU execution time broken down into categories for the pipelined CPU
using the “best-improvement” heuristic.
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