
Simulation/Evaluation Approach
for a VLIW Processor

K. Ebcioglu, J. Moreno, M. Moudgill
High-Performance VLSI Architectures

IBM T.J. Watson Research Center

Simulation/evaluation approach for VLIW processor 2

PAID96 Workshop Architecture and Performance: From Concepts to Application

Objectives of the environment

Compiler for VLIW architecture

Tool to perform tradeoffs

Compiler, architecture, and implementations

Early evaluation of proposed architecture

Based on RS/6000 (PowerPC) architecture

Rather conventional approach but innovative components

Simulation/evaluation approach for VLIW processor 3

PAID96 Workshop Architecture and Performance: From Concepts to Application

Iterative simulation/evaluation process

Evaluate
performance

Verify
correctness

Simulator
modified

Compiler
modified

Feature
proposed

(Fast)

(Not so fast) Compiler
development

Tradeoffs/
performance

Simulation/evaluation approach for VLIW processor 4

PAID96 Workshop Architecture and Performance: From Concepts to Application

Important issues

Interaction among compiler and architecture

Even more than for modern superscalar processors

Simulation/evaluation environment built around such interaction

Predictability of a VLIW architecture

Fully-scheduled code

• Number of VLIWs executed vs. number of cycles
(infinite cache)

Compiler-speculated instructions

• Fewer inaccuracies in count from cycle timer

Simulation/evaluation approach for VLIW processor 5

PAID96 Workshop Architecture and Performance: From Concepts to Application

Object-code compatible VLIW architecture

Allow for different implementations of same architecture

• different number and type of functional units

• includes scalar, superscalar, and VLIW

Basic aspect

• implementation-independent representation of program in
main memory

• suitable for execution in any implementation

Simulation/evaluation approach for VLIW processor 6

PAID96 Workshop Architecture and Performance: From Concepts to Application

VLIW program model

Parallelized program represented as set of “tree-instructions”
[Ebcioglu 88]

Tree-instructions contain

• Multiway branch tree, with tests on condition codes

• Multiple primitive operations

• Multiple branch targets

Subtree is also a tree-instruction

f3 t3

E
CD

op1

A

L0:

C0

C2

C1

B

C3

op3

op5
op2

op1

op4

op5

op6
op7

f1

f2

t1

t2

f5 t5

C

op1
op4

Tests on
condition codes

Destination
targets

Primitive
operations

C4
f4 t4

Simulation/evaluation approach for VLIW processor 7

PAID96 Workshop Architecture and Performance: From Concepts to Application

Semantics of a tree-instruction

All operations are independent and executable concurrently

Sequential semantics for operations in each path of the tree

All execution paths are active simultaneously

Only instructions in taken path complete execution

• concurrent execution of instructions in non-taken paths,
but no effects

f3 t3

E
CD

op1

A

L0:

C0

C2

C1

B

C3

op3

op5
op2

op1

op4

op5

op6
op7

f1

f2

t1

t2

f5 t5

C

op1
op4

C4
f4 t4

Tests on
condition codes

Destination
targets

Primitive
operations

Simulation/evaluation approach for VLIW processor 8

PAID96 Workshop Architecture and Performance: From Concepts to Application

Representation in main memory

Sequential program from depth-first traversal of tree

New instruction: Conditional Skip

• control flow within a tree-instruction

Representation directly executable by scalar/superscalar proces-
sor

f3 t3

E
CD

op1

A

L0:

C0

C2

C1

B

C3

op3

op5
op2

op1

op4

op5

op6
op7

f1

f2

t1

t2

f5 t5

C

op1
op4

C4
f4 t4

L0: skip C0,t1
f1: skip C1,t2
f2: op3

skip C3,t3
f3: op1

op5
branch A

t3: op2
branch B

t2: op4
skip C4,t4

f4: op5
branch D

t4: op1
branch C

t1: skip C2,t5
f5: op1

op4
branch C

t5: op6
op7
branch E

Simulation/evaluation approach for VLIW processor 9

PAID96 Workshop Architecture and Performance: From Concepts to Application

End of tree-instruction

Unconditional branch

Next primitive instruction unreachable from any skip

L0: skip C0,t1
f1: skip C1,t2
f2: op3

skip C3,t3
f3: op1

op5
branch A

t3: op2
branch B

t2: op4
skip C4,t4

f4: op5
branch D

t4: op1
branch C

t1: skip C2,t5
f5: op1

op4
branch C

t5: op6
op7
branch E

L1:

Simulation/evaluation approach for VLIW processor 10

PAID96 Workshop Architecture and Performance: From Concepts to Application

Execution of tree-instruction in processor with limited
resources

Basic concept: “Pruning” the tree

• semantics and number of operations remain unchanged

• implicit “unspeculation”

Pruning points determined by resources in the implementation

• pruning performed by hardware

f3 t3

E

CD

op1

A

L0:

C0

C2C1

B

C3

op3

op5
op2

op1

op4

op5

op6
op7

f1

f2

t1

t2

f5 t5

C

op1
op4

C4
f4 t4

t1

t2

f3 t3

E
CD

op1

A

L0:

C0

C2

C1

B

C3

op3

op5 op2
op1

op4

op5

op6

op7

f1

f2

t1

t2

f5 t5

C

op1

op4

C4
f4 t4

Simulation/evaluation approach for VLIW processor 11

PAID96 Workshop Architecture and Performance: From Concepts to Application

Pruning example: insufficient branching capabilities

• Replace skip instructions by conditional branch instructions

L0:skip C0,t1
f1:skip C1,t2
f2:op3

skip C3,t3
f3:op1

op5
branch A

t3:op2
branch B

t2:op4
skip C4,t4

f4:op5
branch D

L0:bc C0,T1
bc C1,T2

f2:op3
skip C3,t3

f3:op1
op5
branch A

t3:op2
branch B

t4:op1
branch C

t1:skip C2,t5
f5:op1

op4
branch C

t5:op6
op7
branch E

T2:op4
skip C4,t4

f4:op5
branch D

t4:op1
branch C

T1:skip C2,t5
f5:op1

op4
branch C

t5:op6
op7
branch E

Simulation/evaluation approach for VLIW processor 12

PAID96 Workshop Architecture and Performance: From Concepts to Application

Expected features of VLIW processor

RISC-like instruction set architecture

• RS/6000-based

Large register set (64, 128 registers)

10-20 operations per VLIW, 4-8 way branch

Support for compiler-speculated/out-of-order operations

Tree-instructions

Fewer (if any) serializers (e.g., specialized registers)

High memory and register file bandwidth

Simulation/evaluation approach for VLIW processor 13

PAID96 Workshop Architecture and Performance: From Concepts to Application

Model of processor implementation

• Multiple functional units

• Multiport register files

• Multiway branching in every cycle

• Short execution pipelines

Instruction cache memory

VLIW Register

Branch
unit

Funct.
units

GPRs FPRs SPRs Data cache
memory

Simulation/evaluation approach for VLIW processor 14

PAID96 Workshop Architecture and Performance: From Concepts to Application

Evaluation compiler

Targeted (tailored) towards performing tradeoffs

Goals

1. Modifiability

• ability to implement/test new algorithms/architectural features

• emphasize programmers’ productivity over space/ time effi-
ciency

2. Robustness

• verification/debugging as easy as possible

• detect errors early in the process

• internal self-tests

Simulation/evaluation approach for VLIW processor 15

PAID96 Workshop Architecture and Performance: From Concepts to Application

Parallelization process [Moon 92]

Sequential code used as input

Determine parallelized code through compiler algorithms

Transform parallel code into tree-instructions

R0=f(R0)

cc0=R0<C

if(cc0)

exit

R0=f(R0)

cc0=R0<C

R1=f(R0)

if(cc0)

R0=R1

cc0=R0<C
R1=f(R0)

exit

R0=f(R0)

cc0=R0<C
R1=f(R0)

if(cc0)R0=R1
cc0=R1<C

R1=f(R1) exit

L1:

L2

L2:

L3

L3:

L3
Input
code

Parallelized
code

Tree-
instructions

Simulation/evaluation approach for VLIW processor 16

PAID96 Workshop Architecture and Performance: From Concepts to Application

Basic compiler design

Based on dependence-flow graph [Pigali et al. 91, Johnson 94]

Integrated, consistent and persistent representations of

• dependence flow information

• control flow information

• interval information

Targeted to general instruction-level parallelism

✓ architecture applied at end

• parameterized, simple to change

✓ can also generate code for superscalar processor

• currently, only VLIW back-end

Simulation/evaluation approach for VLIW processor 17

PAID96 Workshop Architecture and Performance: From Concepts to Application

Compiler practices

Implicit use of traditional optimization techniques [Auslander 82]

Generalized software-pipelining, applied pervasively

• inner-loops, outer-loops

• complex loop bodies, loops with multiple entries

• non-structured loops, functions

Non-iterative register allocation

• derivation of global graph-coloring [Chaitin 82]

All algorithms are global: entire interval or function

O(n2) algorithms acceptable, even for large regions

Extensive aliasing information, represented in easy-to-use form

• more space

Simulation/evaluation approach for VLIW processor 18

PAID96 Workshop Architecture and Performance: From Concepts to Application

Compiler practices

Cutting-edge technology

Good intermediate form

• expensive, but considered “good investment”

Extensive use of assert/verify

• abort instead of run-time errors

Simulation/evaluation approach for VLIW processor 19

PAID96 Workshop Architecture and Performance: From Concepts to Application

Simulation environment

file.c Parall.
compiler

v2r

RS/6000

VLIW execution statistics
VLIW traces (optional)

RS/6000
Assembler
Linker

VHDL
model

file.vs file.vo

SYMBOLIC,
CYCLE-DRIVEN ARCH. VERIF.

file

Pruner

file’.vs

Timer

Simulation/evaluation approach for VLIW processor 20

PAID96 Workshop Architecture and Performance: From Concepts to Application

Symbolic, cycle-driven environment

Generates basic performance figures

• VLIW execution and cycle count

• operations per VLIW executed

• number and type of stalls

• memory effects

•

Can generate traces

file.c

Parallel.
compiler

v2r

RS/6000

VLIW exec. statistics
VLIW traces (optional)

RS/6000
Assembler/
Linker

file.vs

Timer

file.s

Pruner

file’.vs

Simulation/evaluation approach for VLIW processor 21

PAID96 Workshop Architecture and Performance: From Concepts to Application

Symbolic, cycle-driven simulator

Uses assembly output from compiler

Translates tree-instructions into sequen-
tial program

• includes emulation of the different
architectural features

Instrumented

• VLIW and cycle count, operations
per VLIWs executed, number and
type of stalls, cache misses,

Mixing of parallelized and non-parallel-
ized modules

Fast execution

• 5-1000 times slower than native
version of same program, depend-
ing on instrumentation

file.c

Parallel.
compiler

v2r

RS/6000

VLIW exec. statistics
VLIW traces (optional)

RS/6000
Assembler/
Linker

file.vs

Timer

file.s

Pruner

file’.vs

Simulation/evaluation approach for VLIW processor 22

PAID96 Workshop Architecture and Performance: From Concepts to Application

VHDL mode

Bit-level behavioral description of an
implementation

Behavioral verification of architecture
specification

VHDL
model

ARCH. VERIF.

file.vo

Simulation/evaluation approach for VLIW processor 23

PAID96 Workshop Architecture and Performance: From Concepts to Application

Examples of trade-offs among compiler, architecture and
implementation

Somewhat simplifying ISA

• decomposition into sequences of simpler instructions

• some complex RS/6000 instructions

• index addressing mode

Somewhat complicating ISA

• inclusion of some frequent combined operations: add-shift, ...

Tighter constraints in instruction encoding

• larger register fields (more registers)

• larger condition register field (remove serialization due to CR0)

Varying number of resources

Simulation/evaluation approach for VLIW processor 24

PAID96 Workshop Architecture and Performance: From Concepts to Application

Concluding remarks

Suitable environment for early verification/simulation
of compiler and architecture

• whole environment designed for mutability

✓ sacrifice performance sometimes

✓ extensive use of table-driven techniques

Reasonable fast turn-around time at symbolic level

• from compiler output to simulation results

• allows testing the compiler

Good tool for intended purposes

Promising quantitative results

