
Document Number: MD00016
Revision 01.15

September 25, 2001

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

MIPS32 4K™
Processor Core Family

Software User’s Manual

Copyright © 1998-2001 MIPS Technologies, Inc. All rights reserved.

Unpublished rights reserved under the Copyright Laws of the United States of America.

This document contains information that is proprietary to MIPS Technologies, Inc. (“MIPS Technologies”). Any
copying, reproducing, modifying, or use of this information (in whole or in part) which is not expressly permitted in
writing by MIPS Technologies or a contractually-authorized third party is strictly prohibited. At a minimum, this
information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines.

MIPS Technologies or any contractually-authorized third party reserves the right to change the information contained in
this document to improve function, design or otherwise. MIPS Technologies does not assume any liability arising out of
the application or use of this information, or of any error of omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness
for a particular purpose, are excluded. Any license under patent rights or any other intellectual property rights owned by
MIPS Technologies or third parties shall be conveyed by MIPS Technologies or any contractually-authorized third party
in a separate license agreement between the parties.

The information contained in this document shall not be exported or transferred for the purpose of reexporting in
violation of any U.S. or non-U.S. regulation, treaty, Executive Order, law, statute, amendment or supplement thereto.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the
United States government (“Government”), the use, duplication, reproduction, release, modification, disclosure, or
transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal
Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202
for military agencies. The use of this information by the Government is further restricted in accordance with the terms
of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or any contractually-authorized third party.

MIPS®, R3000®, R4000®, R5000® and R10000® are among the registered trademarks of MIPS Technologies, Inc. in
the United States and certain other countries, and MIPS16™, MIPS16e™,MIPS32™, MIPS64™, MIPS-3D™,
MIPS-based™, MIPS I™, MIPS II™, MIPS III™, MIPS IV™, MIPS V™, MDMX™, SmartMIPS™, 4K™, 4Kc™,
4Km™, 4Kp™, 4KE™, 4KEc™, 4KEm™, 4KEp™, 4KS™, 4KSc™, 5K™, 5Kc™, 5Kf™, 20K™, 20Kc™, R20K™,
R4300™, ATLAS™, CoreLV™, EC™, JALGO™, MALTA™, MGB™, SEAD™, SEAD-2™, SOC-it™ and
YAMON™ are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

01.04-2B MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 3

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

References to Product Names

This manual encompasses the 4Kc™, 4Km™ & 4Kp™ processor cores. The three products are similar in design, hence
the majority of information contained in this manual refers to all three cores.

Throughout this manual the terms “the core” or “the processor” refers to the 4Kc™, 4Km™, and 4Kp™ devices. Some
information in this manual, specifically in Chapters 2 and 4, is specific to one or more of the cores, but not all three. This
information is called out in the text wherever necessary. For example, the section dealing with the TLB is denoted as
being 4Kc™ core specific, whereas the section dealing with the BAT is denoted as being 4Km™ and 4Kp™ core
specific.

Product Differentiation

The three products contained in this manual are similar in design. The main differences are in memory management and
the multiply-divide unit. In general the differences are as follows:

4Kc™ processor: Contains pipelined multiplier and translation lookaside buffer (TLB).

4Km™ processor: Contains pipelined multiplier and block address translator (BAT).

4Kp™ processor: Contains non-pipelined multiplier and block address translator (BAT).

Table of Contents

Chapter 1 Introduction to the MIPS32 4K™ Processor Core Family ...1
1.1 Features ...2
1.2 Block Diagram ..3
1.3 Required Logic Blocks ..4

1.3.1 Execution Unit ..4
1.3.2 Multiply/Divide Unit (MDU) ...5
1.3.3 System Control Coprocessor (CP0) ..5
1.3.4 Memory Management Unit (MMU) ...5
1.3.5 Cache Controllers ..7
1.3.6 Bus Interface Unit (BIU) ..7
1.3.7 Power Management ..7

1.4 Optional Logic Blocks ..7
1.4.1 Instruction Cache ..7
1.4.2 Data Cache ..8
1.4.3 EJTAG Controller ...8

Chapter 2 Pipeline ...9
2.1 Pipeline Stages ..9

2.1.1 I Stage: Instruction Fetch ..11
2.1.2 E Stage: Execution ..11
2.1.3 M Stage: Memory Fetch ...11
2.1.4 A Stage: Align/Accumulate ..11
2.1.5 W Stage: Writeback ..12

2.2 Instruction Cache Miss ..12
2.3 Data Cache Miss ...13
2.4 Multiply/Divide Operations ..14
2.5 MDU Pipeline (4Kc and 4Km Cores) ...14

2.5.1 32x16 Multiply (4Kc and 4Km Cores) ...17
2.5.2 32x32 Multiply (4Kc and 4Km Cores) ...17
2.5.3 Divide (4Kc and 4Km Cores) ...17

2.6 MDU Pipeline (4Kp Core Only) ...19
2.6.1 Multiply (4Kp Core) ...19
2.6.2 Multiply Accumulate (4Kp Core) ...20
2.6.3 Divide (4Kp Core) ..20

2.7 Branch Delay ...21
2.8 Data Bypassing ...21

2.8.1 Load Delay ..22
2.8.2 Move from HI/LO and CP0 Delay ..23

2.9 Interlock Handling ..23
2.10 Slip Conditions ..24
2.11 Instruction Interlocks ..25
2.12 Instruction Hazards ...26

Chapter 3 Memory Management ...29
3.1 Introduction ...29
3.2 Modes of Operation ..30

3.2.1 Virtual Memory Segments ..31
3.2.2 User Mode ...33
3.2.3 Kernel Mode ...34
3.2.4 Debug Mode ..36

3.3 Translation Lookaside Buffer (4Kc Core Only) ...38
iv MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

60
61

76

.

.

.84
3.3.1 Joint TLB ..38
3.3.2 Instruction TLB ...40
3.3.3 Data TLB ..41

3.4 Virtual to Physical Address Translation (4Kc Core) ..41
3.4.1 Hits, Misses, and Multiple Matches ..43
3.4.2 Page Sizes and Replacement Algorithm ...44
3.4.3 TLB Instructions ...45

3.5 Fixed Mapping MMU (4Km & 4Kp Cores) ...45
3.6 System Control Coprocessor ...47

Chapter 4 Exceptions ..49
4.1 Exception Conditions ..49
4.2 Exception Priority ...50
4.3 Exception Vector Locations ..51
4.4 General Exception Processing ..52
4.5 Debug Exception Processing ..53
4.6 Exceptions ...54

4.6.1 Reset Exception ..54
4.6.2 Soft Reset Exception ...55
4.6.3 Debug Single Step Exception ...56
4.6.4 Debug Interrupt Exception ..57
4.6.5 Non-Maskable Interrupt (NMI) Exception ...57
4.6.6 Machine Check Exception (4Kc core) ..58
4.6.7 Interrupt Exception ...58
4.6.8 Debug Instruction Break Exception ..58
4.6.9 Watch Exception — Instruction Fetch or Data Access ..59
4.6.10 Address Error Exception — Instruction Fetch/Data Access ...59
4.6.11 TLB Refill Exception — Instruction Fetch or Data Access (4Kc core) ...
4.6.12 TLB Invalid Exception — Instruction Fetch or Data Access (4Kc core) ...
4.6.13 Bus Error Exception — Instruction Fetch or Data Access ...61
4.6.14 Debug Software Breakpoint Exception ..62
4.6.15 Execution Exception — System Call ..62
4.6.16 Execution Exception — Breakpoint ...62
4.6.17 Execution Exception — Reserved Instruction ..62
4.6.18 Execution Exception — Coprocessor Unusable ...63
4.6.19 Execution Exception — Integer Overflow ...63
4.6.20 Execution Exception — Trap ..63
4.6.21 Debug Data Break Exception ..64
4.6.22 TLB Modified Exception — Data Access (4Kc core) ..64

4.7 Exception Handling and Servicing Flowcharts ...65

Chapter 5 CP0 Registers ...71
5.1 CP0 Register Summary ...71
5.2 CP0 Registers ..73

5.2.1Index Register (CP0 Register 0, Select 0) ...74
5.2.2Random Register (CP0 Register 1, Select 0) ..75
5.2.3EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0) ..
5.2.4Context Register (CP0 Register 4, Select 0) ...78
5.2.5PageMask Register (CP0 Register 5, Select 0) ..79
5.2.6Wired Register (CP0 Register 6, Select 0) ..80
5.2.7BadVAddr Register (CP0 Register 8, Select 0) ..81
5.2.8Count Register (CP0 Register 9, Select 0) ..82
5.2.9EntryHi Register (CP0 Register 10, Select 0) ...83
5.2.10 Compare Register (CP0 Register 11, Select 0) ...
5.2.11Status Register (CP0 Register 12, Select 0) ..85
5.2.12Cause Register (CP0 Register 13, Select 0) ..89
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 v

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

.10
5.2.13 Exception Program Counter (CP0 Register 14, Select 0) ...91
5.2.14 Processor Identification (CP0 Register 15, Select 0) ..92
5.2.15Config Register (CP0 Register 16, Select 0) ...93
5.2.16Config1 Register (CP0 Register 16, Select 1) ...95
5.2.17 Load Linked Address (CP0 Register 17, Select 0) ...97
5.2.18WatchLo Register (CP0 Register 18) ..98
5.2.19WatchHi Register (CP0 Register 19) ..99
5.2.20Debug Register (CP0 Register 23) ..100
5.2.21 Debug Exception Program Counter Register (CP0 Register 24) ...3
5.2.22ErrCtl Register (CP0 Register 26, Select 0) ...104
5.2.23TagLo Register (CP0 Register 28, Select 0) ...104
5.2.24DataLo Register (CP0 Register 28, Select 1) ...106
5.2.25ErrorEPC (CP0 Register 30, Select 0) ...107
5.2.26DeSave Register (CP0 Register 31) ..108

Chapter 6 Hardware and Software Initialization ...109
6.1 Hardware Initialized Processor State ..109

6.1.1 Coprocessor Zero State ...109
6.1.2 TLB Initialization (4Kc core only) ...110
6.1.3 Bus State Machines ...110
6.1.4 Static Configuration Inputs ...110
6.1.5 Fetch Address ..110

6.2 Software Initialized Processor State ...110
6.2.1 Register File ..110
6.2.2 TLB (4Kc Core Only) ...110
6.2.3 Caches ...110
6.2.4 Coprocessor Zero state ..111

Chapter 7 Caches ...113
7.1 Introduction ...113
7.2 Cache Protocols ...114

7.2.1 Cache Organization ...114
7.2.2 Cacheability Attributes ...115
7.2.3 Replacement Policy ..115

7.3 Instruction Cache ..115
7.4 Data Cache ..115
7.5 Memory Coherence Issues ..116

Chapter 8 Power Management ..117
8.1 Register-Controlled Power Management ..117
8.2 Instruction-Controlled Power Management ..118

Chapter 9 EJTAG Debug Support ...119
9.1 Debug Control Register ..120
9.2 Hardware Breakpoints ...122

9.2.1 Features of Instruction Breakpoint ..122
9.2.2 Features of Data Breakpoint ...122
9.2.3 Overview of Registers for Instruction Breakpoints ..123
9.2.4 Registers for Data Breakpoint Setup ...124
9.2.5 Conditions for Matching Breakpoints ...124
9.2.6 Debug Exceptions from Breakpoints ..125
9.2.7 Breakpoint used as Triggerpoint ...127
9.2.8 Instruction Breakpoint Registers ...128
9.2.9 Data Breakpoint Registers ..134

9.3 Test Access Port (TAP) ...142
9.3.1 EJTAG Internal and External Interfaces ...142
9.3.2 Test Access Port Operation ...143
vi MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

.15
9.3.3 Test Access Port (TAP) Instructions ...146
9.4 EJTAG TAP Registers ..148

9.4.1 Instruction Register ...148
9.4.2 Data Registers Overview ..149
9.4.3 Processor Access Address Register ..155
9.4.4 Fastdata Register (TAP Instruction FASTDATA) ...156

9.5 Processor Accesses ...157
9.5.1 Fetch/Load and Store from/to the EJTAG Probe through dmseg ..8

Chapter 10 Instruction Set Overview ..161
10.1 CPU Instruction Formats ..161
10.2 Load and Store Instructions ..162

10.2.1 Scheduling a Load Delay Slot ...162
10.2.2 Defining Access Types ...162

10.3 Computational Instructions ...163
10.3.1 Cycle Timing for Multiply and Divide Instructions ...163

10.4 Jump and Branch Instructions ...164
10.4.1 Overview of Jump Instructions ...164
10.4.2 Overview of Branch Instructions ..164

10.5 Control Instructions ...164
10.6 Coprocessor Instructions ...164
10.7 Enhancements to the MIPS Architecture ..164

10.7.1 CLO - Count Leading Ones ..165
10.7.2 CLZ - Count Leading Zeros ..165
10.7.3 MADD - Multiply and Add Word ..165
10.7.4 MADDU - Multiply and Add Unsigned Word ...165
10.7.5 MSUB - Multiply and Subtract Word ...165
10.7.6 MSUBU - Multiply and Subtract Unsigned Word ...165
10.7.7 MUL - Multiply Word ..166
10.7.8 SSNOP- Superscalar Inhibit NOP ..166

Chapter 11 MIPS32 4K Processor Core Instructions ..167
11.1 Understanding the Instruction Fields ..167

11.1.1 Instruction Fields ..168
11.1.2 Instruction Descriptive Name and Mnemonic ..169
11.1.3 Format Field ..169
11.1.4 Purpose Field ..169
11.1.5 Description Field ...170
11.1.6 Restrictions Field ..170
11.1.7 Operation Field ...171
11.1.8 Exceptions Field ..171
11.1.9 Programming Notes and Implementation Notes Fields ..171

11.2 Operation Section Notation and Functions ...172
11.2.1 Instruction Execution Ordering ...172
11.2.2 Special Symbols in Pseudocode Notation ...172
11.2.3 Pseudocode Functions ...173

11.3 Op and Function Subfield Notation ..177
11.4 CPU Opcode Map ...177
11.5 Instruction Set ...179

Appendix A Revision History ...329
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 vii

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

.

....1

.

.

.

List of Figures

Figure 1-1: 4K Processor Core Block Diagram ...4
Figure 1-2: Address Translation during a Cache Access in the 4Kc Core...6
Figure 1-3: Address Translation during a Cache Access in the 4Km and 4Kp Cores ..6
Figure 2-1: 4Kc Core Pipeline Stages ..10
Figure 2-2: 4Km Core Pipeline Stages...10
Figure 2-3: 4Kp Core Pipeline Stages ..10
Figure 2-4: Instruction Cache Miss Timing (4Kc core) ...12
Figure 2-5: Instruction Cache Miss Timing (4Km and 4Kp cores)..13
Figure 2-6: Load/Store Cache Miss Timing (4Kc core)...13
Figure 2-7: Load/Store Cache Miss Timing (4Km and 4Kp cores) ...14
Figure 2-8: MDU Pipeline Behavior during Multiply Operations (4Kc and 4Km processors)6
Figure 2-9: MDU Pipeline Flow During a 32x16 Multiply Operation ..17
Figure 2-10: MDU Pipeline Flow During a 32x32 Multiply Operation ..17
Figure 2-11: MDU Pipeline Flow During an 8-bit Divide (DIV) Operation ...18
Figure 2-12: MDU Pipeline Flow During a 16-bit Divide (DIV) Operation ...18
Figure 2-13: MDU Pipeline Flow During a 24-bit Divide (DIV) Operation ...18
Figure 2-14: MDU Pipeline Flow During a 32-bit Divide (DIV) Operation ...18
Figure 2-15: 4Kp MDU Pipeline Flow During a Multiply Operation..20
Figure 2-16: 4Kp MDU Pipeline Flow During a Multiply Accumulate Operation ...20
Figure 2-17: 4Kp MDU Pipeline Flow During a Divide (DIV) Operation..20
Figure 2-18: IU Pipeline Branch Delay..21
Figure 2-19: IU Pipeline Data Bypass..22
Figure 2-20: IU Pipeline M to E bypass...22
Figure 2-21: IU Pipeline A to E Data Bypass ..23
Figure 2-22: IU Pipeline Slip after MFHI ..23
Figure 2-23: Instruction Cache Miss Slip...24
Figure 3-1: Address Translation During a Cache Access in the 4Kc Core ..30
Figure 3-2: Address Translation During a Cache Access in the 4Km and 4Kp cores ..30
Figure 3-3: 4K Processor Core Virtual Memory Map..32
Figure 3-4: User Mode Virtual Address Space ..33
Figure 3-5: Kernel Mode Virtual Address Space ...35
Figure 3-6: Debug Mode Virtual Address Space ...37
Figure 3-7: JTLB Entry (Tag and Data) ...39
Figure 3-8: Overview of a Virtual-to-Physical Address Translation in the 4Kc Core...42
Figure 3-9: 32-bit Virtual Address Translation ..43
Figure 3-10: TLB Address Translation Flow in the 4Kc Processor Core ..44
Figure 3-11: FM Memory Map (ERL=0) in the 4Km and 4Kp Processor Cores ...46
Figure 3-12: FM Memory Map (ERL=1) in the 4Km and 4Kp Processor Cores ...47
Figure 4-1: General Exception Handler (HW) ...66
Figure 4-2: General Exception Servicing Guidelines (SW) ...67
Figure 4-3: TLB Miss Exception Handler (HW) — 4Kc Core only ..68
Figure 4-4: TLB Exception Servicing Guidelines (SW) — 4Kc Core only...69
Figure 4-5: Reset, Soft Reset and NMI Exception Handling and Servicing Guidelines..70
Figure 5-1: Wired and Random Entries in the TLB ...80
Figure 7-1: Cache Array Formats...114
Figure 9-1: Instruction Hardware Breakpoint Overview (4Kc Core)...122
Figure 9-2: Instruction Hardware Breakpoint Overview (4Km and 4Kp Core)...122
Figure 9-3: Data Hardware Breakpoint Overview (4Kc Core) ..123
Figure 9-4: Data Hardware Breakpoint Overview (4Km/4Kp Core) ...123
Figure 9-5: TAP Controller State Diagram ..144
viii MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

..148
156
Figure 9-6: Concatenation of the EJTAG Address, Data and Control Registers ...148
Figure 9-7: TDI to TDO Path when in Shift-DR State and FASTDATA Instruction is Selected
Figure 9-8: Endian Formats for thePADRegister ...
Figure 10-1: Instruction Formats..162
Figure 11-1: Example Instruction Description ...168
Figure 11-2: Example of Instruction Fields..169
Figure 11-3: Example of Instruction Descriptive and Mnemonic Name ...169
Figure 11-4: Example of Instruction Format..169
Figure 11-5: Example of Instruction Purpose ..170
Figure 11-6: Example of Instruction Description...170
Figure 11-7: Example of Instruction Restrictions ..170
Figure 11-8: Sample Instruction Operation..171
Figure 11-9: Sample Instruction Exception..171
Figure 11-10: Sample Instruction Programming Notes..171
Figure 11-11: AddressTranslation Pseudocode Function...174
Figure 11-12: LoadMemory Pseudocode Function..175
Figure 11-13: StoreMemory Pseudocode Function..175
Figure 11-14: Prefetch Pseudocode Function...176
Figure 11-15: SyncOperation Pseudocode Function..176
Figure 11-16: SignalException Pseudocode Function ...176
Figure 11-17: NullifyCurrentInstruction PseudoCode Function..177
Figure 11-18: CoprocessorOperation Pseudocode Function..177
Figure 11-19: JumpDelaySlot Pseudocode Function ...177
Figure 11-20: Usage of Address Fields to Select Index and Way..219
Figure 11-21: Unaligned Word Load Using LWL and LWR ..247
Figure 11-22: Bytes Loaded by LWL Instruction ..248
Figure 11-23: Unaligned Word Load Using LWL and LWR ..251
Figure 11-24: Bytes Loaded by LWL Instruction ..252
Figure 11-25: Unaligned Word Store Using SWL and SWR...298
Figure 11-26: Bytes Stored by an SWL Instruction ...299
Figure 11-27: Unaligned Word Store Using SWR and SWL...300
Figure 11-28: Bytes Stored by SWR Instruction..301
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 ix

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

x MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

.........

...76

79

.

List of Tables

Table 2-1: 4Kc and 4Km Core Instruction Latencies ...15
Table 2-2: 4Kc and 4Km Core Instruction Repeat Rates ...16
Table 2-3: 4Kp Core Instruction Latencies ..19
Table 2-4: Pipeline Interlocks ...23
Table 2-5: Instruction Interlocks ..25
Table 2-6: Instruction Hazards ...26
Table 3-1: User Mode Segments ..34
Table 3-2: Kernel Mode Segments...35
Table 3-3: Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces37
Table 3-4: CPU Access to drseg Address Range ...37
Table 3-5: CPU Access to dmseg Address Range..38
Table 3-6: TLB Tag Entry Fields ...39
Table 3-7: TLB Data Entry Fields..40
Table 3-8: TLB Instructions ...45
Table 3-9: Cache Coherency Attributes ...45
Table 3-10: Cacheability of Segments with Block Address Translation ...45
Table 4-1: Priority of Exceptions ..50
Table 4-2: Exception Vector Base Addresses ..51
Table 4-3: Exception Vector Offsets ..52
Table 4-4: Exception Vectors...52
Table 4-5: Debug Exception Vector Addresses ...54
Table 4-6: Register States an Interrupt Exception..58
Table 4-7: Register States on a Watch Exception ..59
Table 4-8: CP0 Register States on an Address Exception Error ..60
Table 4-9: CP0 Register States on a TLB Refill Exception ...60
Table 4-10: CP0 Register States on a TLB Invalid Exception...61
Table 4-11: Register States on a Coprocessor Unusable Exception...63
Table 4-12: Register States on a TLB Modified Exception ...64
Table 5-1: CP0 Registers ...71
Table 5-2: CP0 Register Field Types ...73
Table 5-3: Index Register Field Descriptions...74
Table 5-4:Random Register Field Descriptions ..75
Table 5-5:EntryLo0, EntryLo1 Register Field Descriptions ..
Table 5-6: Cache Coherency Attributes ...76
Table 5-7:Context Register Field Descriptions ...78
Table 5-8:PageMask Register Field Descriptions...79
Table 5-9: Values for the Mask Field of thePageMask Register ..
Table 5-10: Wired Register Field Descriptions..80
Table 5-11:BadVAddr Register Field Description ..81
Table 5-12:Count Register Field Description..82
Table 5-13:EntryHi Register Field Descriptions...83
Table 5-14:Compare Register Field Description ..84
Table 5-15:Status Register Field Descriptions ...86
Table 5-16:Cause Register Field Descriptions ...89
Table 5-17: Cause Register ExcCode Field Descriptions ...90
Table 5-18:EPC Register Field Description..91
Table 5-19:PRId Register Field Descriptions..92
Table 5-20:Config Register Field Descriptions ..93
Table 5-21: Cache Coherency Attributes ...94
Table 5-22:Config1 Register Field Descriptions — Select 1 ..95
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 xi

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

120

.

..

.220
222

275
Table 5-23:LLAddr Register Field Descriptions ...97
Table 5-24:WatchLo Register Field Descriptions ...98
Table 5-25:WatchHi Register Field Descriptions ...99
Table 5-26:Debug Register Field Descriptions ..100
Table 5-27:DEPC Register Formats..103
Table 5-28:ErrCtl Register Field Descriptions ...104
Table 5-29:TagLo Register Field Descriptions ...105
Table 5-30:DataLo Register Field Description ...106
Table 5-31:ErrorEPC Register Field Description...107
Table 5-32:DeSave Register Field Description ...108
Table 7-1: Instruction and Data Cache Attributes ...113
Table 7-2: Instruction and Data Cache Sizes ..114
Table 9-1:Debug Control Register Field Descriptions ...
Table 9-2: Overview of Status Register for Instruction Breakpoints ..123
Table 9-3: Overview of Registers for each Instruction Breakpoint ..123
Table 9-4: Overview of Status Register for Data Breakpoints...124
Table 9-5: Overview of Registers for each Data Breakpoint ...124
Table 9-6: Addresses for Instruction Breakpoint Registers ...128
Table 9-7:IBS Register Field Descriptions ..129
Table 9-8:IBAn Register Field Descriptions..130
Table 9-9:IBMn Register Field Descriptions...131
Table 9-10:IBASIDn Register Field Descriptions ...132
Table 9-11:IBCn Register Field Descriptions ...133
Table 9-12: Addresses for Data Breakpoint Registers ...134
Table 9-13:DBS Register Field Descriptions ..135
Table 9-14:DBAn Register Field Descriptions ..136
Table 9-15:DBMn Register Field Descriptions ...137
Table 9-16:DBASIDn Register Field Descriptions..138
Table 9-17:DBCn Register Field Descriptions ...139
Table 9-18:DBVn Register Field Descriptions ..141
Table 9-19: EJTAG Interface Pins ..142
Table 9-20: Implemented EJTAG Instructions ..146
Table 9-21: Device Identification Register ..150
Table 9-22:Implementation Register Descriptions...150
Table 9-23:EJTAG Control Register Descriptions ...151
Table 9-24: Fastdata Register Field Description ...156
Table 9-25: Operation of the FASTDATA access ..157
Table 10-1: Byte Access within a Word...163
Table 11-1: Symbols Used in Instruction Operation Statements ..172
Table 11-2: AccessLength Specifications for Loads/Stores...176
Table 11-3: Encoding of the Opcode Field ..178
Table 11-4: Special Opcode Encoding of Function Field ..178
Table 11-5: Spedial2 Opcode Encoding of Function Field ..178
Table 11-6: RegImm Encoding of rt Field ...178
Table 11-7: COP0 Encoding of rs Field ...179
Table 11-8: COP0 Encoding of Function Field When rs=CO ...179
Table 11-9: Instruction Set ..179
Table 11-10: Usage of Effective Address ..218
Table 11-11: Encoding of Bits[17:16] of CACHE Instruction ..219
Table 11-12: Encoding of Bits [20:18] of the CACHE Instruction ErrCtl[WST,SPR] Cleared.....................................
Table 11-13: Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST] Set. ErrCtl[SPR] Cleared
Table 11-14: Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[SPR] Set..223
Table 11-15: Values of thehint Field for the PREF Instruction ..
xii MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

RISC
turing
pherals
ighly
to focus

ork,

MIPS
nit

U.

can be
until the
to the

d in the
 in the

ns as
0-style
and
fixed
elect 0)

run

ernal
Chapter 1

Introduction to the MIPS32 4K™ Processor Core Family

The MIPS32™ 4K™ processor cores from MIPS® Technologies are high-performance, low-power, 32-bit MIPS
cores intended for custom system-on-silicon applications. The cores are designed for semiconductor manufac
companies, ASIC developers, and system OEMs who want to rapidly integrate their own custom logic and peri
with a high-performance RISC processor. The cores are fully synthesizable to allow maximum flexibility; they are h
portable across processes and can be easily integrated into full system-on-silicon designs, allowing developers
their attention on end-user products.

The cores are ideally positioned to support new products for emerging segments of the digital consumer, netw
systems, and information management markets, enabling new tailored solutions for embedded applications.

The 4K family has three members: the 4Kc™, 4Km™, and 4Kp™ cores. The cores incorporate aspects of both the
Technologies R3000® and R4000® processors. The three devices differ mainly in the type of multiply-divide u
(MDU) and the memory management unit (MMU).

• The 4Kc core contains a fully-associative translation lookaside buffer (TLB) based MMU and a pipelined MD

• The 4Km core contains a fixed mapping (FM) mechanism in the MMU, that is smaller and simpler than the
TLB-based implementation used in the 4Kc core, and a pipelined MDU (as in the 4Kc core) is used.

• The 4Kp core contains a fixed mapping (FM) mechanism in the MMU (like the 4Km core), and a smaller
non-pipelined iterative MDU.

Optional instruction and data caches are fully programmable from 0 - 16 Kbytes in size. In addition, each cache
organized as direct-mapped, 2-way, 3-way, or 4-way set associative. On a cache miss, loads are blocked only
first critical word becomes available. The pipeline resumes execution while the remaining words are being written
cache. Both caches are virtually indexed and physically tagged. Virtual indexing allows the cache to be indexe
same clock in which the address is generated rather than waiting for the virtual-to-physical address translation
Memory Management Unit (MMU).

All cores execute the MIPS32 instruction set architecture (ISA). The MIPS32 ISA contains all MIPS II instructio
well as special multiply-accumulate, conditional move, prefetch, wait, and zero/one detect instructions. The R400
memory management unit of the 4Kc core contains a 3-entry instruction TLB (ITLB), a 3-entry data TLB(DTLB),
a 16 dual-entry joint TLB (JTLB) with variable page sizes. The 4Km and 4Kp processor cores contain a simplified
mapping (FM) mechanism where the mapping of address spaces is determined through bits in the CP0 Config (s
register.

The 4Kc and 4Km multiply-divide unit (MDU) supports a maximum issue rate of one 32x16 multiply
(MUL/MULT/MULTU), multiply-add (MADD/MADDU), or multiply-subtract (MSUB/MSUBU) operation per clock,
or one 32x32 MUL, MADD, or MSUB every other clock. The basic Enhanced JTAG (EJTAG) features provide CPU
control with stop, single stepping and re-start, and with software breakpoints through the SDBBP instruction. In
addition, optional instruction and data virtual address hardware breakpoints, and optional connection to an ext
EJTAG probe through the Test Access Port (TAP) may be included.

This chapter provides an overview of the MIPS32 4K processor cores and consists of the following sections:

• Section 1.1, "Features"

• Section 1.2, "Block Diagram"

• Section 1.3, "Required Logic Blocks"

• Section 1.4, "Optional Logic Blocks"
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 1

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 1 Introduction to the MIPS32 4K™ Processor Core Family
1.1 Features

• 32-bit Address and Data Paths

• MIPS32 compatible instruction set

– All MIPSII™ instructions

– Multiply-add and multiply-subtract instructions (MADD, MADDU, MSUB, MSUBU)

– Targeted multiply instruction (MUL)

– Zero and one detect instructions (CLZ, CLO)

– Wait instruction (WAIT)

– Conditional move instructions (MOVZ, MOVN)

– Prefetch instruction (PREF)

• Programmable Cache Sizes

– Individually configurable instruction and data caches

– Sizes from 0 up to 16-Kbyte

– Direct mapped, 2-, 3-, or 4-Way set associative

– Loads that miss in the cache are blocked only until critical word is available

– Write-through, no write-allocate

– 128 bit (16-byte) cache line size, word sectored - suitable for standard 32-bit wide single-port SRAM

– Virtually indexed, physically tagged

– Cache line locking support

– Non-blocking prefetches

• ScratchPad RAM support

– Replace one way of I-Cache and/or D-Cache

– Max 20-bit index (1M address)

– Memory mapped registers attached to scratchpad port can be used as a co-processor interface

• R4000 Style Privileged Resource Architecture

– Count/compare registers for real-time timer interrupts

– Instruction and data watch registers for software breakpoints

– Separate interrupt exception vector

• Programmable Memory Management Unit (4Kc core only)

– 16 dual-entry R4000 style JTLB with variable page sizes

– 3-entry instruction TLB

– 3-entry data TLB

• Programmable Memory Management Unit (4Km and 4Kp cores only)

– fixed mapping (no JTLB, ITLB, or DTLB)

– Address spaces mapped using register bits
2 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

1.2 Block Diagram

d 1 data

iagram
eeds of
• Simple Bus Interface Unit (BIU)

– All I/Os fully registered

– Separate unidirectional 32-bit address and data buses

– Two 16-byte collapsing write buffers

• Multiply-Divide Unit (4Kc and 4Km cores)

– Max issue rate of one 32x16 multiply per clock

– Max issue rate of one 32x32 multiply every other clock

– Early in divide control. Minimum 11, maximum 34 clock latency on divide

• Multiply-Divide Unit (4Kp cores)

– Iterative multiply and divide. 32 or more cycles for each instruction.

• Power Control

– No minimum frequency

– Power-down mode (triggered by WAIT instruction)

– Support for software-controlled clock divider

• EJTAG Debug Support

– CPU control with start, stop and single stepping

– Software breakpoints via the SDBBP instruction

– Optional hardware breakpoints on virtual addresses; 4 instruction and 2 data breakpoints, 2 instruction an
breakpoint, or no breakpoints

– Test Access Port (TAP) facilitates high speed download of application code

1.2 Block Diagram

All cores contain both required and optional blocks. Required blocks are the lightly shaded areas of the block d
and must be implemented to remain MIPS-compliant. Optional blocks can be added to the cores based on the n
the implementation. The required blocks are as follows:

• Execution Unit

• Multiply-Divide Unit (MDU)

• System Control Coprocessor (CP0)

• Memory Management Unit (MMU)

• Cache Controller

• Bus Interface Unit (BIU)

• Power Management

Optional blocks include:

• Instruction Cache (I-Cache)

• Data Cache (D-Cache)

• Enhanced JTAG (EJTAG) Controller
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 3

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 1 Introduction to the MIPS32 4K™ Processor Core Family

ide

tions

two read

ns are
Figure 1-1 shows a block diagram of a 4K core. The MMU can be implemented using either a translation lookas
buffer (TLB) in the case of the 4Kc core, or a fixed mapping (FM) in the case of the 4Km and 4Kp cores. Refer toChapter
3, “Memory Management,” on page 29 for more information.

Figure 1-1 4K Processor Core Block Diagram

1.3 Required Logic Blocks

The following subsections describe the various required logic blocks of the 4K processor cores.

1.3.1 Execution Unit

The core execution unit implements a load-store architecture with single-cycle Arithmetic Logic Unit (ALU) opera
(logical, shift, add, subtract) and an autonomous multiply-divide unit. The core contains thirty-two 32-bit
general-purpose registers used for scalar integer operations and address calculation. The register file consists of
ports and one write port and is fully bypassed to minimize operation latency in the pipeline.

 The execution unit includes:

• 32-bit adder used for calculating the data address

• Address unit for calculating the next instruction address

• Logic for branch determination and branch target address calculation

• Load aligner

• Bypass multiplexers used to avoid stalls when executing instruction streams where data-producing instructio
followed closely by consumers of their results

• Zero/One detect unit for implementing the CLZ and CLO instructions

• ALU for performing bitwise logical operations

• Shifter and Store aligner

System
Coprocessor

Cache
Controller

MDU

TLB or FM

MMU

D-Cache

BIU

TAP

EJTAG

 Power
Mgmt

I-Cache Off-Chip
Debug I/F

Fixed/Required Optional

 Execution
Core

(RF/ALU/Shift

T
hi

n
I/F

O
n-

C
hi

p
B

us
(e

s)
4 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

1.3 Required Logic Blocks

ists
l
6x16
.
ations
plete.
skip
ses a

LO),
ns. It
nted
t to

ion is

t be
ion,

e

s and
re

e
de), and
 debug

r the

three

are
slating
used to
imize
 a 1
1.3.2 Multiply/Divide Unit (MDU)

The Multiply/Divide unit performs multiply and divide operations. In the 4Kc and 4Km processors, the MDU cons
of a 32x16 booth-encoded multiplier, result-accumulation registers (HI and LO), a divide state machine, and al
multiplexers and control logic required to perform these functions. This pipelined MDU supports execution of a 1
or 32x16 multiply operation every clock cycle; 32x32 multiply operations can be issued every other clock cycle
Appropriate interlocks are implemented to stall the issue of back-to-back 32x32 multiply operations. Divide oper
are implemented with a simple 1 bit per clock iterative algorithm and require 35 clock cycles in worst case to com
Early-in to the algorithm detects sign extension of the dividend, if it is actual size is 24, 16 or 8 bit. the divider will
7, 15 or 23 of the 32 iterations. An attempt to issue a subsequent MDU instruction while a divide is still active cau
pipeline stall until the divide operation is completed.

In the 4Kp processor, the non-pipelined MDU consists of a 32-bit full-adder, result-accumulation registers (HI and
a combined multiply/divide state machine, and all multiplexers and control logic required to perform these functio
performs any multiply using 32 cycles in an iterative 1 bit per clock algorithm. Divide operations are also impleme
with a simple 1 bit per clock iterative algorithm (no early-in) and require 35 clock cycles to complete. An attemp
issue a subsequent MDU instruction while a multiply/divide is still active causes a pipeline stall until the operat
completed.

An additional multiply instruction, MUL is implemented, which specifies that the lower 32 bits of the multiply resul
placed in the register file instead of the HI/LO register pair. By avoiding the explicit move from LO (MFLO) instruct
required when using the LO register, and by supporting multiple destination registers, the throughput of
multiply-intensive operations is increased.

Two instructions, multiply-add (MADD/MADDU) and multiply-subtract (MSUB/MSUBU), are used to perform th
multiply-add and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the
product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operand
then subtracts the product from the HI and LO registers. The MADD/MADDU and MSUB/MSUBU operations a
commonly used in Digital Signal Processor (DSP) algorithms.

1.3.3 System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, cache protocols, th
exception control system, the processor’s diagnostics capability, operating mode selection (kernel vs. user mo
the enabling/disabling of interrupts. Configuration information such as cache size, set associativity, and EJTAG
features are available by accessing the CP0 registers. Refer toChapter 5, “CP0 Registers,” on page 71 for more
information on the CP0 registers. Refer toChapter 9, “EJTAG Debug Support,” on page 119 for more information on
EJTAG debug registers.

1.3.4 Memory Management Unit (MMU)

Each core contains an MMU that interfaces between the execution unit and the cache controller, shown inFigure 1-1.
Although the 4Kc core implements a 32-bit architecture, the Memory Management Unit (MMU) is modeled afte
MMU found in the 64-bit R4000 family, as defined by the MIPS32 architecture.

The 4Kc core implements an MMU based on a Translation Lookaside Buffer (TLB). The TLB actually consists of
translation buffers: a 16 dual-entry fully associative Joint TLB (JTLB), a 3-entry fully associative Instruction TLB
(ITLB) and a 3-entry fully associative data TLB(DTLB). The ITLB and DTLB, also referred to as the micro TLBs,
managed by the hardware and are not software visible. The micro TLBs contain subsets of the JTLB. When tran
addresses, the corresponding micro TLB (I or D) is accessed first. If there is not a matching entry, the JTLB is
translate the address and refill the micro TLB. If the entry is not found in the JTLB, an exception is taken. To min
the micro TLB miss penalty, the JTLB is looked up in parallel with the DTLB for data references. This results in
cycle stall for a DTLB miss and a 2 cycle stall for an ITLB miss.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 5

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 1 Introduction to the MIPS32 4K™ Processor Core Family

TLB,
ual
The 4Km and 4Kp cores implement an FM-based MMU instead of a TLB-based MMU. The FM replaces both the J
ITLB and DTLB in the 4Kc core. The FM performs a simple translation to get the physical address from the virt
address. Refer toChapter 3, “Memory Management,” on page 29 for more information on the FM.

Figure 1-2shows how the ITLB, DTLB and JTLB are used in the 4Kc core.Figure 1-3show how the FM is used in the
4Km and 4Kp cores.

Figure 1-2 Address Translation during a Cache Access in the 4Kc Core

Figure 1-3 Address Translation during a Cache Access in the 4Km and 4Kp Cores

I-Cache

D-Cache

Comparator

Comparator

Instruction
Hit/Miss

Data
Hit/Miss

Virtual Address

Virtual Address

ITLB

JTLB

DTLB

Instruction
Address

Calculator

Data
Address

Calculator

Entry

EntryIVA

I-Cache

D-Cache

Comparator

Comparator

Instruction
Hit/Miss

Data
Hit/Miss

Virtual Address

Virtual Address

FM

Instruction
Address

Calculator

Data
Address

Calculator
6 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

1.4 Optional Logic Blocks

. For
Kbytes

cache,

 of a
them

r
stalling

lock of
er

ent, and
he rest
idle

control
ode. In

nd
 rather
, a lock
1.3.5 Cache Controllers

The data and instruction cache controllers support caches of various sizes, organizations, and set associativity
example, the data cache can be 2 Kbytes in size and 2-way set associative, while the instruction cache can be 8
in size and 4-way set associative. There are separate cache controllers for the I-Cache and D-Cache.

Each cache controller contains and manages a one-line fill buffer. Besides accumulating data to be written to the
the fill buffer is accessed in parallel with the cache and data can be bypassed back to the core.

Refer toChapter 7, “Caches,” on page 113 for more information on the instruction and data cache controllers.

1.3.6 Bus Interface Unit (BIU)

The Bus Interface Unit (BIU) controls the external interface signals. Additionally, it contains the implementation
32-byte collapsing write-buffer. The purpose of this buffer is to hold and combine write transactions before issuing
to the external interface. Since the data caches for all cores follow a write-through cache policy, the write-buffe
significantly reduces the number of write transactions on the external interface as well as reducing the amount of
in the core due to issuance of multiple writes in a short period of time.

The write-buffer is organized as two 16-byte buffers. Each buffer contains data from a single 16-byte aligned b
memory. One buffer contains the data currently being transferred on the external interface, while the other buff
contains accumulating data from the core.

1.3.7 Power Management

The core offers a number of power management features, including low-power design, active power managem
power-down modes of operation. The core is a static design that supports a WAIT instruction designed to signal t
of the device that execution and clocking should be halted, hence reducing system power consumption during
periods.

The core provides two mechanisms for system-level, low-power support:

• Register-controlled power management

• Instruction-controlled power management

In register controlled power management mode the core provides three bits in the CP0 Status register for software
of the power management function and allows interrupts to be serviced even when the core is in power-down m
instruction controlled power-down mode execution of the WAIT instruction is used to invoke low-power mode.

Refer toChapter 8, “Power Management,” on page 117 for more information on power management.

1.4 Optional Logic Blocks

The core consists of the following optional logic blocks as shown in the block diagram inFigure 1-1.

1.4.1 Instruction Cache

The instruction cache is an optional on-chip memory array of up to 16 Kbytes. The cache is virtually indexed a
physically tagged, allowing the virtual-to-physical address translation to occur in parallel with the cache access
than having to wait for the physical address translation. The tag holds 22 bits of the physical address, 4 valid bits
bit, and the LRF (Least Recently Filled) replacement bit.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 7

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 1 Introduction to the MIPS32 4K™ Processor Core Family

r-line”
vailable
t) on a

ysically
olds 22

ruction
t be

er-entry

uction

o data

 virtual
eakpoints

h virtual
ompare,

 a
 in the
All cores support instruction cache-locking. Cache locking allows critical code to be locked into the cache on a “pe
basis, enabling the system designer to maximize the efficiency of the system cache. Cache locking is always a
on all instruction cache entries. Entries can be marked as locked or unlocked (by setting or clearing the lock-bi
per-entry basis using the CACHE instruction.

1.4.2 Data Cache

The data cache is an optional on-chip memory array of up to 16-Kbytes. The cache is virtually indexed and ph
tagged, allowing the virtual-to-physical address translation to occur in parallel with the cache access. The tag h
bits of the physical address, 4 valid bits, a lock bit, and the LRF replacement bit.

In addition to instruction cache locking, all cores also support a data cache locking mechanism identical to the inst
cache, with critical data segments to be locked into the cache on a “per-line” basis. The locked contents canno
selected for replacement on a cache miss, but can be updated on a store hit.

Cache locking is always available on all data cache entries. Entries can be marked as locked or unlocked on a p
basis using the CACHE instruction.

The physical data cache memory must be byte writable to support non-word store operations.

1.4.3 EJTAG Controller

All cores provide basic EJTAG support with debug mode, run control, single step and software breakpoint instr
(SDBBP) as part of the core. These features allow for the basic software debug of user and kernel code.

Optional EJTAG features include hardware breakpoints. A 4K core may have four instruction breakpoints and tw
breakpoints, two instruction breakpoints and one data breakpoint, or no breakpoints. The hardware instruction
breakpoints can be configured to generate a debug exception when an instruction is executed anywhere in the
address space. Bit mask and address space identifier (ASID) values may apply in the address compare. These br
are not limited to code in RAM like the software instruction breakpoint (SDBBP). The data breakpoints can be
configured to generate a debug exception on a data transaction. The data transaction may be qualified with bot
address, data value, size and load/store transaction type. Bit mask and ASID values may apply in the address c
and byte mask may apply in the value compare.

Refer toChapter 9, “EJTAG Debug Support,” on page 119 for more information on hardware breakpoints.

An optional Test Access Port (TAP) provides for the communication from an EJTAG probe to the CPU through
dedicated port, may also be applied to the core. This provides the possibility for debugging without debug code
application, and for download of application code to the system.

Refer toChapter 9, “EJTAG Debug Support,” on page 119 for more information on the EJTAG features.
8 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

allows
Chapter 2

Pipeline

The MIPS32 4K processor cores implement a 5-stage pipeline similar to the original R3000 pipeline. The pipeline
the processor to achieve high frequency while minimizing device complexity, reducing both cost and power
consumption. This chapter contains the following sections:

• Section 2.1, "Pipeline Stages"

• Section 2.2, "Instruction Cache Miss"

• Section 2.3, "Data Cache Miss"

• Section 2.4, "Multiply/Divide Operations"

• Section 2.5, "MDU Pipeline (4Kc and 4Km Cores)"

• Section 2.6, "MDU Pipeline (4Kp Core Only)"

• Section 2.7, "Branch Delay"

• Section 2.8, "Data Bypassing"

• Section 2.9, "Interlock Handling"

• Section 2.10, "Slip Conditions"

• Section 2.11, "Instruction Interlocks"

• Section 2.12, "Instruction Hazards"

2.1 Pipeline Stages

The pipeline consists of five stages:

• Instruction (I stage)

• Execution (E stage)

• Memory (M stage)

• Align/Accumulate (A stage)

• Writeback (W stage)

All three cores implement a “Bypass” mechanism that allows the result of an operation to be sent directly to the
instruction that needs it without having to write the result to the register and then read it back.

Figure 2-1 shows the operations performed in each pipeline stage of the 4Kc processor.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 9

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 2 Pipeline
Figure 2-1 4Kc Core Pipeline Stages

Figure 2-2 shows the operations performed in each pipeline stage of the 4Km processor core.

Figure 2-2 4Km Core Pipeline Stages

Figure 2-3 shows the operations performed in each pipeline stage of the 4Kp processor core.

Figure 2-3 4Kp Core Pipeline Stages

I

A->E Bypass
M->E Bypass

A->E Bypass

E M A W

I-Cache

I-TLB

RegRd

I Dec D-AC

I-AC1 I-AC2

ALU Op

D-Cache

D-TLB

Align

MUL RegWRegW

RegW

RegW

RegW

Mult, Macc 16x16, 32x16 CPA

CPAMult, Macc 32x32

Sign AdjustDivide

IU
-P

ip
e

lin
e

M
D

U
-P

ip
e

lin
e

I-AC2

D-AC

Align

MUL

I-TLB

I Dec

ALU Op

D-Cache

D-TLB

Divide

Mult, Macc

Sign Adjust

I-Cache

RegRd

I-AC1

RegW

CPA

: I$ Tag and Data read
: I-TLB Look-up
: Instruction Decode
: Register file read
: Instruction Address Calculation stage 1 and 2
: Arithmetic Logic and Shift operations
: Data Address Calculation
: D$ Tag and Data read
: D-TLB Look-up
: Load data aligner
: Register file write or HI/LO write
: The MUL instruction. Uses MDU-Pipeline write Reg file
: Carry Propagate Adder
: Multiply and Multiply Accumulate instructions
: Divide instructions
: Last stage of Divide is a sign adjustment

: One or more stall cycles.

I

A->E Bypass
M->E Bypass

A->E Bypass

E M A W

I-Cache RegRd

I Dec D-AC

I-AC1 I-AC2

ALU Op

D-Cache Align

MUL

RegW

RegW

RegW

RegW

RegW

Mult, Macc 16x16, 32x16Carry Prop. Add

Carry Prop. AddMult, Macc 32x32

Sign AdjustDivide

RegW

I-AC2

D-AC

Align

MUL

I Dec

ALU Op

D-Cache

Divide

Mult, Macc

Sign Adjust

I-Cache

RegRd

I-AC1

CPA

: I$ Tag and Data read
: Instruction Decode
: Register file read
: Instruction Address Calculation stage 1 and 2
: Arithmetic Logic and Shift operations
: Data Address Calculation
: D$ Tag and Data read
: Load data aligner
: Register file write or HI/LO write
: The MUL instruction. Uses MDU-Pipeline write Reg file
: Carry Propagate Adder
: Multiply and Multiply Accumulate instructions
: Divide instructions
: Last stage of Divide is a sign adjustment

: One or more stall cycles.

IU
-P

ip
e

lin
e

M
D

U
-P

ip
e

lin
e

I

A->E Bypass
M->E Bypass

A->E Bypass

E M A W

I-Cache

I-TLB

RegRd

I Dec D-AC

I-AC1 I-AC2

ALU Op

D-Cache

D-TLB

Align

MUL

RegW

RegW

RegWMultiply, Divide

RegW

I-AC2

D-AC

Align

MUL

I Dec

ALU Op

D-Cache

Multiply, Divide

I-Cache

RegRd

I-AC1

: I$ Tag and Data read
: Instruction Decode
: Register file read
: Instruction Address Calculation stage 1 and 2
: Arithmetic Logic and Shift operations
: Data Address Calculation
: D$ Tag and Data read
: Load data aligner
: Register file write or HI/LO write
: The MUL instruction. Uses MDU-Pipeline, write Reg file
: Multiply, Multiply Accumulate and Divide instructions

: One or more stall cycles.

IU
-P

ip
e

lin
e

M
D

U
-P

ip
e

lin
e

10 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

2.1 Pipeline Stages

branch

ructions.

the

.

2.1.1 I Stage: Instruction Fetch

During the Instruction fetch stage:

• An instruction is fetched from the instruction cache.

• The I-TLB performs a virtual-to-physical address translation (4Kc core only).

2.1.2 E Stage: Execution

During the Execution stage:

• Operands are fetched from the register file.

• Operands from M and A stage are bypassed to this stage.

• The Arithmetic Logic Unit (ALU) begins the arithmetic or logical operation for register-to-register instructions.

• The ALU calculates the data virtual address for load and store instructions.

• The ALU determines whether the branch condition is true and calculates the virtual branch target address for
instructions.

• Instruction logic selects an instruction address

• All multiply and divide operations begin in this stage.

2.1.3 M Stage: Memory Fetch

During the Memory Fetch stage:

• The arithmetic or logic ALU operation completes.

• The data cache fetch and the data virtual-to-physical address translation are performed for load and store inst

• Data TLB (4Kc core only) and data cache lookup are performed and a hit/miss determination is made.

• A 16x16 or 32x16 MUL operation completes in the array and stalls for one clock in the M stage to complete
carry-propagate-add in the M stage (4Kc and 4Km cores).

• A 32x32 MUL operation stalls for two clocks in the M stage to complete second cycle of the array and the
carry-propagate-add in the M stage (4Kc and 4Km cores).

• A 16x16 or 32x16 MULT/MADD/MSUB operation completes in the array (4Kc and 4Km cores).

• A 32x32 MULT/MADD/MSUB operation stalls for one clock in the MMDU stage of the MDU pipeline to complete
second cycle in the array (4Kc and 4Km cores).

• A divide operation stalls for a maximum of 32 clocks in the MMDU stage of the MDU pipeline (4Kc and 4Km cores)

• A multiply operation stalls for 31 clocks in MMDU stage (4Kp core only).

• A multiply-accumulate operation stalls for 33 clocks in MMDU stage (4Kp core only).

• A divide operation stalls for 32 clocks in the MMDU stage (4Kp core only).

2.1.4 A Stage: Align/Accumulate

During the Align/Accumulate stage:

• A separate aligner aligns loaded data with its word boundary.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 11

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 2 Pipeline

stage

e
Km

he W

resides
truction
E stage
is busy,

e access
d is also

bypass
e written
• A MUL operation makes the result available for writeback. The actual register writeback is performed in the W
(all 4K cores).

• A MULT/MADD/MSUB operation performs the carry-propagate-add. This includes the accumulate step for th
MADD/MSUB operations. The actual register writeback to HI and LO is performed in the W stage (4Kc and 4
cores).

• A divide operation perform the final Sign-Adjust. The actual register writeback to HI and LO is performed in t
stage (4Kc and 4Km cores).

• A multiply/divide operation writes to HI/LO registers (4Kp core only).

2.1.5 W Stage: Writeback

• For register-to-register or load instructions, the result is written back to the register file during the W stage.

2.2 Instruction Cache Miss

When the instruction cache is indexed, the instruction address is translated to determine if the required instruction
in the cache. An instruction cache miss occurs when the requested instruction address does not reside in the ins
cache. When a cache miss is detected in the I stage, the core transitions to the E stage. The pipeline stalls in the
until the miss is resolved. The bus interface unit must select the address from multiple sources. If the address bus
the request will remain in this arbitration stage (B-ASel inFigure 2-4Figure 2-5) until the bus is available. The core
drives the selected address onto the bus. The number of clocks required to access the bus is determined by th
time of the array that contains the data. The number of clocks required to return the data once the bus is accesse
determined by the access time of the array.

Once the data is returned to the core, the critical word is written to the instruction register for immediate use. The
mechanism allows the core to use the data once it becomes available, as opposed to having the entire cache lin
to the instruction cache, then reading out the required word.

Figure 2-4shows a timing diagram of an instruction cache miss for the 4Kc core.Figure 2-5shows a timing diagram of
an instruction cache miss for the 4Km and 4Kp cores.

Figure 2-4 Instruction Cache Miss Timing (4Kc core)

EEE EI

I Dec
I-Cache

I-TLB I-TLB B-ASel Bus* IC-Bypass
RegRd ALU Op

I-A2I-A1

* Contains all of the cycles that address and data are utilizing the bus.
12 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

2.3 Data Cache Miss

 cache. A

s in the
equests

e array
d by the

d to the
ble, as
Figure 2-5 Instruction Cache Miss Timing (4Km and 4Kp cores)

2.3 Data Cache Miss

When the data cache is indexed, the data address is translated to determine if the required data resides in the
data cache miss occurs when the requested data address does not reside in the data cache.

When a data cache miss is detected in the M stage (D-TLB), the core transitions to the A stage. The pipeline stall
A stage until the miss is resolved (requested data is returned). The bus interface unit arbitrates between multiple r
and selects the correct address to be driven onto the bus (B-ASel inFigure 2-6Figure 2-7). The core drives the selected
address onto the bus. The number of clocks required to access the bus is determined by the access time of th
containing the data. The number of clocks required to return the data once the bus is accessed is also determine
access time of the array.

Once the data is returned to the core, the critical word of data passes through the aligner before being forwarde
execution unit and register file. The bypass mechanism allows the core to use the data once it becomes availa
opposed to having the entire cache line written to the data cache, then reading out the required word.

Figure 2-6shows a timing diagram of a data cache miss for the 4Kc core.Figure 2-7shows a timing diagram of a data
cache miss for the 4Km and 4Kp cores.

Figure 2-6 Load/Store Cache Miss Timing (4Kc core)

EEE EI

I DecI-Cache B-ASel Bus* IC-Bypass
RegRd ALU Op

I-A2I-A1

* Contains all of the cycles that address and data are utilizing the bus.

D-TLB
D-CacheALU1

B-ASel

RegR

Bus* RegWAlignDC Bypass

* Contains all of the time that address and data are utilizing the bus.

WAAAAME
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 13

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 2 Pipeline

 file
and

tions.
e HI
t from
ms.

the
llowing
e used
DU

 for
t stall
by

te
e

 pass

can
x32
ons
 the
Figure 2-7 Load/Store Cache Miss Timing (4Km and 4Kp cores)

2.4 Multiply/Divide Operations

All three cores implement the standard MIPS II™ multiply and divide instructions. Additionally, several new
instructions were added for enhanced performance.

The targeted multiply instruction, MUL, specifies that multiply results be placed in the general purpose register
instead of the HI/LO register pair. By avoiding the explicit MFLO instruction, required when using the LO register,
by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Four instructions, multiply-add (MADD), multiply-add-unsigned (MADDU) multiply-subtract (MSUB), and
multiply-subtract-unsigned (MSUBU), are used to perform the multiply-accumulate and multiply-subtract opera
The MADD/MADDU instruction multiplies two numbers and then adds the product to the current contents of th
and LO registers. Similarly, the MSUB/MSUBU instruction multiplies two operands and then subtracts the produc
the HI and LO registers. The MADD/MADDU and MSUB/MSUBU operations are commonly used in DSP algorith

All multiply operations (except the MUL instruction) write to the HI/LO register pair. All integer operations write to
general purpose registers (GPR). Because MDU operations write to different registers than integer operations, fo
integer instructions can execute before the MDU operation has completed. The MFLO and MFHI instructions ar
to move data from the HI/LO register pair to the GPR file. If a MFLO or MFHI instruction is issued before the M
operation completes, it will stall to wait for the data.

2.5 MDU Pipeline (4Kc and 4Km Cores)

The 4Kc and 4Km processor cores contain an autonomous multiply/divide unit (MDU) with a separate pipeline
multiply and divide operations. This pipeline operates in parallel with the integer unit (IU) pipeline and does no
when the IU pipeline stalls. This allows long-running MDU operations, such as a divide, to be partially masked
system stalls and/or other integer unit instructions.

The MDU consists of a 32x16 booth encoded multiplier, result/accumulation registers (HI and LO), a divide sta
machine, and all necessary multiplexers and control logic. The first number shown (‘32’ of 32x16) represents thrs
operand. The second number (‘16’ of 32x16) represents thert operand. The core only checks the latter(rt) operand value
to determine how many times the operation must pass through the multiplier. The 16x16 and 32x16 operations
through the multiplier once. A 32x32 operation passes through the multiplier twice.

The MDU supports execution of a 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations
be issued every other clock cycle. Appropriate interlocks are implemented to stall the issue of back-to-back 32
multiply operations. Multiply operand size is automatically determined by logic built into the MDU. Divide operati
are implemented with a simple 1 bit per clock iterative algorithm with an early in detection of sign extension on

D-CacheALU1

B-ASel

RegR

Bus* RegWAlignDC Bypass

* Contains all of the time that address and data are utilizing the bus.

WAAAAME
14 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

2.5 MDU Pipeline (4Kc and 4Km Cores)

stall

e first

ithout
will

in its
e IU

’ refers
dividend(rs). Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline
until the divide operation is completed.

Table 2-1 lists the latencies (number of cycles until a result is available) for multiply and divide instructions. The
latencies are listed in terms of pipeline clocks. In this table ‘latency’ refers to the number of cycles necessary for th
instruction to produce the result needed by the second instruction.

In Table 2-1a latency of one means that the first and second instruction can be issued back to back in the code w
the MDU causing any stalls in the IU pipeline. A latency of two means that if issued back to back, the IU pipeline
be stalled for one cycle. MUL operations are special because it needs to stall the IU pipeline in order to mainta
register file write slot. Consequently the MUL 16x16 or 32x16 operation will always force a one cycle stall of th
pipeline, and the MUL 32x32 will force a two cycle stall. If the integer instruction immediately following the MUL
operation uses its result, an additional stall is forced on the IU pipeline.

Table 2-2 lists the repeat rates (peak issue rate of cycles until the operation can be reissued) for multiply
accumulate/subtract instructions. The repeat rates are listed in terms of pipeline clocks. In this table ‘repeat rate
to the case where the first MDU instruction (in the table below) if back to back with the second instruction.

Table 2-1 4Kc and 4Km Core Instruction Latencies

Size of operand
1st Instruction[1]

Instruction Sequence Latency
clocks

1st Instruction 2nd instruction

16 bit
MULT/MULTU,

MADD/MADDU, or
MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU, or

MFHI/MFLO
1

32 bit
MULT/MULTU,

MADD/MADDU, or
MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU, or

MFHI/MFLO
2

16 bit MUL Integer operation[2] 2[3]

32 bit MUL Integer operation[2] 2[3]

8 bit DIVU MFHI/MFLO 9

16 bit DIVU MFHI/MFLO 17

24 bit DIVU MFHI/MFLO 25

32 bit DIVU MFHI/MFLO 33

8 bit DIV MFHI/MFLO 10[4]

16 bit DIV MFHI/MFLO 18[4]

24 bit DIV MFHI/MFLO 26[4]

32 bit DIV MFHI/MFLO 34[4]

any MFHI/MFLO Integer operation[2] 2

any MTHI/MTLO MADD/MADDU, or
MSUB/MSUBU 1

Note: [1] For multiply operations this is thert operand. For divide operations this is thers operand.

Note: [2] Integer Operation refers to any integer instruction that uses the result of a previous MDU operation.

Note: [3] This does not include the 1 or 2 IU pipeline stalls (16 bit or 32 bit) that MUL operation causes irrespective of
the following instruction.These stalls do not add to the latency of 2.

Note: [4] If both operands are positive the Sign Adjust stage is bypassed. Latency is then the same as for DIVU.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 2 Pipeline

cks in

e MDU
 MDU

are

the
peline
Figure 2-8 below shows the pipeline flow for the following sequence:

1. 32x16 multiply (Mult1)

2. Add

3. 32x32 multiply (Mult2)

4. Sub

The 32x16 multiply operation requires one clock of each pipeline stage to complete. The 32x32 requires two clo
the MMDU pipe-stage. The MDU pipeline is shown as the shaded areas ofFigure 2-8and always starts a computation in
the final phase of the E stage. As shown in the figure, the MMDU pipe-stage of the MDU pipeline occurs in parallel with
the M stage of the IU pipeline, the AMDU stage occurs in parallel with the A stage, and the WMDU stage occurs in parallel
with the W stage. However in case the instruction in the MDU pipeline needs multiple passes through the sam
stage, this parallel behavior will be skewed by one or more clocks. This is not a problem because results in the
pipeline are written to HI and LO registers, while the integer pipeline results are written to the register file.

Figure 2-8 MDU Pipeline Behavior during Multiply Operations (4Kc and 4Km processors)

The following is a cycle-by-cycle analysis ofFigure 2-8.

1. The first 32x16 multiply operation (Mult1) enters the I stage and is fetched from the instruction cache.

2. An Add operation enters the I stage. The Mult1 operation enters the E stage. The integer and MDU pipelines sh
the I and E pipeline stages. At the end of the E stage in cycle 2, the multiply operation (Mult1) is passed to the
MDU pipeline.

3. In cycle 3 a 32x32 multiply operation (Mult2) enters the I stage and is fetched from the instruction cache. Since
Add operation has not yet reached the M stage by cycle 3, there is no activity in the M stage of the integer pi
at this time.

4. In cycle 4 the Sub instruction enters I stage. The second multiply operation (Mult2) enters the E stage. And the Add
operation enters M stage of the integer pipe. Since the Mult1 multiply is a 32x16 operation, only one clock is
required for the MMDU stage, hence the Mult1 operation passes to the AMDU stage of the MDU pipeline.

Table 2-2 4Kc and 4Km Core Instruction Repeat Rates

Operand Size of
1st Instruction

Instruction Sequence Repeat
Rate

1st Instruction 2nd instruction

16 bit
MULT/MULTU,

MADD/MADDU,
MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU 1

32 bit
MULT/MULTU,

MADD/MADDU,
MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU 2

I E A WM

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7 cycle 8

Mult1

Add

Mult2

I E AMDU WMDUMMDU

I E AMDU WMDUMMDUMMDU

Sub

I E A WM
16 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

2.5 MDU Pipeline (4Kc and 4Km Cores)

ir

32x32
Add

 MDU
is

ter pair

 MDU
is

/LO

or
5. In cycle 5 the Sub instruction enters E stage. The Mult2 multiply enters the MMDU stage. The Add operation enters
the A stage of the integer pipeline. The Mult1 operation completes and is written back in to the HI/LO register pa
in the WMDU stage.

6. Since a 32x32 multiply requires two passes through the multiplier, with each pass requiring one clock, the
Mult2 remains in the MMDU stage in cycle 6. The Sub instruction enters M stage in the integer pipeline. The
operation completes and is written to the register file in the W stage of the integer pipeline.

7. The Mult2 multiply operation progresses to the AMDU stage, and the Sub instruction progress to A stage.

8. The Mult2 operation completes and is written to the HI/LO registers pair the WMDU stage, while the Sub
instruction write to the register file in W stage.

2.5.1 32x16 Multiply (4Kc and 4Km Cores)

The 32x16 multiply operation begins in the last phase of the E stage, which is shared between the integer and
pipelines. In the latter phase of the E stage, thers andrt operands arrive and the booth recoding function occurs at th
time. The multiply calculation requires one clock and occurs in the MMDU stage. In the AMDU stage, the
carry-propagate-add function occurs and the operation is completed. The result is written back to the HI/LO regis
in the first half of the WMDU stage.

Figure 2-9 shows a diagram of a 32x16 multiply operation.

Figure 2-9 MDU Pipeline Flow During a 32x16 Multiply Operation

2.5.2 32x32 Multiply (4Kc and 4Km Cores)

The 32x32 multiply operation begins in the last phase of the E stage, which is shared between the integer and
pipelines. In the latter phase or the E stage, thers andrt operands arrive and the booth recoding function occurs at th
time. The multiply calculation requires two clocks and occurs in the MMDU stage. In the AMDU stage, the
carry-propagate-add (CPA) function occurs and the operation is completed. The result is written back to the HI
register pair in the first half of the WMDU stage.

Figure 2-10 shows a diagram of a 32x32 multiply operation.

Figure 2-10 MDU Pipeline Flow During a 32x32 Multiply Operation

2.5.3 Divide (4Kc and 4Km Cores)

Divide operations are implemented using a simple non-restoring division algorithm. This algorithm works only f
positive operands, hence the first cycle of the MMDU stage is used to negate thers operand (RS Adjust) if needed. Note

Booth Array CPA

E MMDU AMDU

Reg WR

WMDU

Clock 1 2 3 4

Booth Array

E MMDU MMDU AMDU

Reg WR

WMDU

CPAArray

Booth

Clock 1 2 3 4 5
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 17

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 2 Pipeline

ute an
e
ing 7,

even if
he sign
that this cycle is executed even if the adjustment is not necessary. At maximum the next 32 clocks (3-34) exec
iterative add/subtract function. In cycle 3 an early in detection is performed in parallel with the add/subtract. Th
adjustedrs operand is detected to be zero extended on the upper most 8, 16 or 24 bits. If this is the case the follow
15 or 23 cycles of the add/subtract iterations are skipped.

The remainder adjust (Rem Adjust) cycle is required if the remainder was negative. Note that this cycle is taken
the remainder was positive. A sign adjust is performed on the quotient and/or remainder if necessary. Note that t
adjust cycle is skipped if both operands are positive. In this case the Rem Adjust is moved to the AMDU stage.

Figure 2-11, Figure 2-12, Figure 2-13 andFigure 2-14 show the latency for 8, 16, 24 and 32-bit divide operations,
respectively. The repeat rate is either 11, 19, 27 or 35 cycles (one less if thesign adjust stage is skipped) as a second
divide can be in theRS Adjust stage when the first divide is in theReg WR stage.

Figure 2-11 MDU Pipeline Flow During an 8-bit Divide (DIV) Operation

Figure 2-12 MDU Pipeline Flow During a 16-bit Divide (DIV) Operation

Figure 2-13 MDU Pipeline Flow During a 24-bit Divide (DIV) Operation

Figure 2-14 MDU Pipeline Flow During a 32-bit Divide (DIV) Operation

RS Adjust

E Stage MMDU Stage MMDU Stage MMDU Stage AMDU Stage

Rem AdjustAdd/Subtract

Clock 1 2 4-10 11 12

WMDU Stage

13

Reg WRSign Adjust

MMDU Stage

Add/Subtract

3

Early In

RS Adjust

E Stage MMDU Stage MMDU Stage MMDU Stage AMDU Stage

Rem AdjustAdd/Subtract

Clock 1 2 4-18 19 20

WMDU Stage

21

Reg WRSign Adjust

MMDU Stage

Add/Subtract

3

Early In

RS Adjust

E Stage MMDU Stage MMDU Stage MMDU Stage AMDU Stage

Rem AdjustAdd/Subtract

Clock 1 2 4-26 27 28

WMDU Stage

29

Reg WRSign Adjust

MMDU Stage

Add/Subtract

3

Early In

RS Adjust

E Stage MMDU Stage MMDU Stage MMDU Stage AMDU Stage

Rem AdjustAdd/Subtract

Clock 1 2 4-34 35 36

WMDU Stage

37

Reg WRSign Adjust

MMDU Stage

Add/Subtract

3

Early In
18 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

2.6 MDU Pipeline (4Kp Core Only)

 not
 not
stalls

te
ltiply
re
tive
rations

r the

for

in the

 in the
2.6 MDU Pipeline (4Kp Core Only)

The multiply/divide unit (MDU) is a separate autonomous block for multiply and divide operations. The MDU is
pipelined, but rather performed the computations iteratively in parallel with the integer unit (IU) pipeline. It does
stall when the IU pipeline stalls. This allows the long-running MDU operations to be partially masked by system
and/or other integer unit instructions.

The MDU consists of one 32-bit adder result-accumulate registers (HI and LO), a combined multiply/divide sta
machine and all multiplexers and control logic. A simple 1-bit per clock recursive algorithm is used for both mu
and divide operations. Using booth’s algorithm all multiply operations complete in 32 clocks. Two extra clocks a
needed for multiply-accumulate. The non-restoring algorithm used for divide operations will not work with nega
numbers. Adjustment before and after are thus required depending on the sign of the operands. All divide ope
complete in 33 to 35 clocks.

Table 2-3 lists the latencies (number of cycles until a result is available) for multiply and divide instructions. The
latencies are listed in terms of pipeline clocks. In this table ‘latency’ refers to the number of cycles necessary fo
second instruction to use the results of the first.

2.6.1 Multiply (4Kp Core)

Multiply operations implement a simple iterative multiply algorithm. Using Booth’s approach, this algorithm works
both positive and negative operands. The operation uses 32 cycles in MMDU stage to complete a multiplication. The
register writeback to HI and LO are done in the A stage. For MUL operations, the register file writeback is done
WMDU stage.

Figure 2-15 shows the latency for a multiply operation. The repeat rate is 33 cycles as a second multiply can be
first MMDU stage when the first multiply is in AMDU stage.

Table 2-3 4Kp Core Instruction Latencies

Operand Signs of
1st Instruction

(Rs,Rt)

Instruction Sequence Latency
clocks

1st Instruction 2nd instruction

any, any MULT/MULTU
MADD/MADDU,

MSUB/MSUBU, or
MFHI/MFLO

32

any, any MADD/MADDU,
MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU, or

MFHI/MFLO
34

any, any MUL Integer operation[1] 32

any, any DIVU MFHI/MFLO 33

pos, pos DIV MFHI/MFLO 33

any, neg DIV MFHI/MFLO 34

neg, pos DIV MFHI/MFLO 35

any, any MFHI/MFLO Integer operation[1] 2

any, any MTHI/MTLO MADD/MADDU,
MSUB/MSUBU 1

Note: [1] Integer Operation refers to any integer instruction that uses the result of a previous MDU operation.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 19

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 2 Pipeline

eeded
.

ands,
le is
ction.

r. Note
or if this
st
ck to

 how
t M
Figure 2-15 4Kp MDU Pipeline Flow During a Multiply Operation

2.6.2 Multiply Accumulate (4Kp Core)

Multiply-accumulate operations use the same multiply machine as used for multiply only. Two extra stages are n
to perform the addition/subtraction. The operations uses 34 cycles in MMDU stage to complete the multiply-accumulate
The register writeback to HI and LO are done in the A stage.

Figure 2-16 shows the latency for a multiply-accumulate operation. The repeat rate is 35 cycles as a second
multiply-accumulate can be in the E stage when the first multiply is in the last MMDU stage.

Figure 2-16 4Kp MDU Pipeline Flow During a Multiply Accumulate Operation

2.6.3 Divide (4Kp Core)

Divide operations also implement a simple non-restoring algorithm. This algorithm works only for positive oper
hence the first cycle of the MMDU stage is used to negate the rs operand (RS Adjust) if needed. Note that this cyc
executed even if negation is not needed. The next 32 cycle (3-34) executes an interactive add/subtract-shift fun

Two sign adjust (Sign Adjust 1/2) cycles are used to change the sign of one or both the quotient and the remainde
that one or both of these cycles are skipped if they are not needed. The rule is, if both operands were positive
is an unsigned division; both of the sign adjust cycles are skipped. If thers operand was negative, one of the sign adju
cycles is skipped. If only thers operand was negative, none of the sign adjust cycles are skipped. Register writeba
HI and LO are done in the A stage.

Figure 2-17 shows the latency for a divide operation. The repeat rate is either 34, 35 or 36 cycles (depending on
many sign adjust cycles are skipped) as a second divide can be in the E stage when the first divide is in the lasMDU
stage.

Figure 2-17 4Kp MDU Pipeline Flow During a Divide (DIV) Operation

Add/sub-shift HI/LO Write

E-Stage MMDU-Stage AMDU-Stage

Reg WR

WMDU-Stage

Clock 1 2-33 34 35

Add/Subtract Shift

E Stage MMDU Stage MMDU Stage MMDU Stage

HI/LO Write

AMDU Stage

Accumulate/HIAccumulate/LO

Clock 1 2-33 34 35 36

WMDU Stage

37

RS Adjust

E Stage MMDU Stage MMDU Stage MMDU Stage MMDU Stage

Sign Adjust 1Add/Subtract

Clock 1 2 3-34 35 36

AMDU Stage

37

HI/LO WriteSign Adjust 2

WMDU Stage

38
20 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

2.7 Branch Delay

ic
 be used
to the

stage.

After
) or the

branch
OP

s are
nt the

tion as
ypass is
Rt read
2.7 Branch Delay

The pipeline has a branch delay of one cycle. The one-cycle branch delay is a result of the branch decision log
operating during the E pipeline stage. This allows the branch target address calculated in the previous stage to
for the instruction access in the following E stage. The branch delay slot means that no bubbles are injected in
pipeline on branch instructions. The address calculation and branch condition check are both performed in the E
The target PC is used for the next instruction in the I stage (2nd instruction after the branch).

The pipeline begins the fetch of either the branch path or the fall-through path in the cycle following the delay slot.
the branch decision is made, the processor continues with the fetch of either the branch path (for a taken branch
fall-through path (for the non-taken branch).

The branch delay means that the instruction immediately following a branch is always executed, regardless of the
direction. If no useful instruction can be placed after the branch, then the compiler or assembler must insert a N
instruction in the delay slot.

Figure 2-18 illustrates the branch delay.

Figure 2-18 IU Pipeline Branch Delay

2.8 Data Bypassing

Most MIPS32 instructions use one or two register values as source operands for the execution. These operand
fetched from the register file in the first part of E stage. The ALU straddles the E to M boundary, and can prese
result early in M stage. however the result is not written in the register file until W stage. This leaves following
instructions unable to use the result for 3 cycles. To overcome this problem Data bypassing is used.

Between the register file and the ALU a data bypass multiplexer is placed on both operands (seeFigure 2-19). This
enables the 4K core to forward data from preceding instructions which have the target register of the first instruc
one of the source operands. An M to E bypass and an A to E bypass feed the bypass multiplexers. A W to E b
not needed, as the register file is capable of making an internal bypass of Rd write data directly to the Rs and
ports.

One Cycle

Jump Target Instruction

Delay Slot Instruction

One Clock
Branch
Delay

One Cycle One Cycle One Cycle One Cycle One Cycle

I E M A W

I E M A W

I E M A

Jump or Branch
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 21

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 2 Pipeline

The

ter the
ely
ction
Figure 2-19 IU Pipeline Data Bypass

Figure 2-20shows the Data bypass for an Add1 instruction followed by a Sub2 and another Add3 instruction. The Sub2
instruction uses the output from the Add1 instruction as one of the operands, and thus the M to E bypass is used.
following Add3 uses the result from both the first Add1 instruction and the Sub2 instruction. Since the Add1 data is now
in A stage, the A to E bypass is used, and the M to E bypass is used to bypass the Sub2 data to the Add2 instruction.

Figure 2-20 IU Pipeline M to E bypass

2.8.1 Load Delay

Load delay refers to the fact, that data fetched by a load instruction is not available in the integer pipeline until af
load aligner in A stage. All instructions need the source operands available in E stage. An instruction immediat
following a load instruction will, if it has the same source register as was the target of the load, cause an instru
interlock pipeline slip in E stage (seeSection 2.11, "Instruction Interlocks" on page 25). If not the first, but the second
instruction after the load, use the data from the load, the A to E bypass (seeFigure 2-19) exists to provide for stall free
operation. An instruction flow of this shown inFigure 2-21.

Bypass
multiplexers

E stage M stage A stage W stageI stage

Load data, HI/LO Data
or CP0 data

A to E bypass

M to E bypass

Instruction
ALU

M stage

ALU

E stageReg File

Rs Addr

Rt Addr
Rs Read

Rt Read
Rd Write

One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle

R3=R2+R1
E M A W

I E M A W

I E M A

ADD1

R4=R3-R7

SUB2

R5=R3+R4

ADD3

I

A to E bypassM to E bypass

M to E bypass
22 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

2.9 Interlock Handling

he
ruction
erlock

ptions
Figure 2-21 IU Pipeline A to E Data Bypass

2.8.2 Move from HI/LO and CP0 Delay

As indicated inFigure 2-19, not only load data, but also data from a move from the HI or LO register instruction
(MFHI/MFLO) and a move from CP0 (MFC0) enter the IU-Pipeline in A stage. That is, data is not available in t
integer pipeline until early in the A stage. The A to E bypass is available for this data. But as for Loads the inst
immediately after one of these instructions, can not use this data right away. If it does it will cause an instruction int
slip in E stage (seeSection 2.11, "Instruction Interlocks" on page 25). An interlock slip after an MFHI is illustrated in
Figure 2-22.

Figure 2-22 IU Pipeline Slip after MFHI

2.9 Interlock Handling

Smooth pipeline flow is interrupted when cache misses occur or when data dependencies are detected. Interru
handled using hardware, such as cache misses, are referred to asinterlocks. At each cycle, interlock conditions are
checked for all active instructions.

Table 2-4 lists the types of pipeline interlocks for the 4K processor cores.

Table 2-4 Pipeline Interlocks

Interlock Type Sources Slip Stage

ITLB Miss (4Kc core) Instruction TLB I Stage

ICache Miss Instruction cache E Stage

Instruction
Producer-consumer hazards E/M Stage

Hardware Dependencies (MDU/TLB) E Stage

One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle

I E M A W

I E M A W

I E M A

Load Instruction

Consumer of Load Data Instruction

Data bypass from A to E

One Clock
Load Delay

One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle

I E M A W

E M A WslipI

MFHI (to R3)

ADD (R4=R3+R5)

Data bypass from A to E
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 23

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 2 Pipeline

opagate

ormally
In general, MIPS processors support two types of hardware interlocks:

• Stalls, which are resolved by halting the pipeline

• Slips, which allow one part of the pipeline to advance while another part of the pipeline is held static

In the 4K processor cores, all interlocks are handled as slips.

2.10 Slip Conditions

On every clock internal logic determines whether each pipe stage is allowed to advance. These slip conditions pr
backwards down the pipe. For example, if the M stage does not advance, neither will the E or I stages.

Slipped instructions are retried on subsequent cycles until they issue. The back end of the pipeline advances n
during slips in an attempt to resolve the conflict. NOPS are inserted into the bubble in the pipeline.Figure 2-23 shows
an instruction cache miss.

Figure 2-23 Instruction Cache Miss Slip

DTLB Miss (4Kc core) Data TLB M Stage

Data Cache Miss

Load that misses in data cache

W Stage

Multi-cycle cache Op

Sync

Store when write thru buffer full

EJTAG breakpoint on store

VA match needing data value comparison

Store hitting in fill buffer

Table 2-4 Pipeline Interlocks (Continued)

Interlock Type Sources Slip Stage

1 Cache miss detected

1 2

00

E

M I1 I2 I3

A

I

0I3I0 I1 I2

I4I4I2 I3 I4

I5I5I3 I4 I5

3 Execute E-stage

Stage

I4

0

I5

I6

3

Clock 1 2 3 4 5 6

2 Critical word received
24 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

2.11 Instruction Interlocks

cted.
n the
nd waits

he, the

l

r

Figure 2-23shows a diagram of a two-cycle slip. In the first clock cycle, the pipeline is full and the cache miss is dete
Instruction I0 is in the A stage, instruction I1 is in the M stage, instruction I2 is in the E stage, and instruction I3 is i
I stage. The cache miss occurs in clock 2 when the I4 instruction fetch is attempted. I4 advances to the E-stage a
for the instruction to be fetched from main memory. In this example it takes two clocks (3 and 4) to fetch the I4
instruction from memory. Once the cache miss is resolved in clock 4 and the instruction is bypassed to the cac
pipeline is restarted, causing the I4 instruction to finally execute it’s E-stage operations.

2.11 Instruction Interlocks

Most instructions can be issued at a rate of one per clock cycle. In some cases, in order to ensure a sequentia
programming model, the issue of an instruction is delayed to ensure that the results of a prior instruction will be
available.Table 2-5 details the instruction interactions that delay the issuance of an instruction into the processo
pipeline.

Table 2-5 Instruction Interlocks

Instruction Interlocks

First Instruction Second Instruction Issue Delay (in
Clock Cycles)

Slip Stage

LB/LBU/LH/LHU/LL/LW/LWL/LWR Consumer of load data 1 E stage

MFC0 Consumer of destination
register 1 E stage

MULT/MADD/MSUB

(4Kc and 4Km cores)

16bx32b
MFLO/MFHI

0 M stage

32bx32b 1 M stage

MUL
(4Kc and 4Km cores)

16bx32b
Consumer of target data

2 E stage

32bx32b 3 E stage

MUL
(4Kc and 4Km cores)

16bx32b
Non-Consumer of target data

1 E stage

32bx32b 2 E stage

MFHI/MFLO Consumer of target data 1 E stage

MULT/MADD/MSUB
(4Kc and 4Km cores)

16bx32b MULT/MUL/MADD/MSUB
MTHI/MTLO/DIV

0 E stage

32bx32b 1 E stage

DIV
MULT/MUL/MADD/MSUB
/MTHI/MTLO/MFHI/MFL
O/DIV

Until DIV
completes E stage

MULT/MUL/MADD/MSUB/MTHI/MTLO/
MFHI/MFLO/DIV (4Kp core)

MULT/MUL/MADD/MSUB
/MTHI/MTLO/MFHI/MFL
O/DIV

Until 1st MDU op
completes E stage

MUL (4Kp core) Any Instruction Until MUL
completes E stage

MFC0 Consumer of target data 1 E stage

TLBWR/TLBWI (4Kc core) Load/Store/PREF/CACHE/
Cop0 op

2 E stage

TLBR (4Kc core) 1 E stage
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 25

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 2 Pipeline

ruction
ceptions

ndicate
s the
nd

uction.
ompare
d to the
pical
2.12 Instruction Hazards

In general, the core ensures that instructions are executed following a fully sequential program model. Each inst
in the program sees the results of the previous instruction. There are some exceptions to this model. These ex
are referred to asinstruction hazards.

The following table shows the instruction hazards that exist in the core. The first and second instruction fields i
the combination of instructions that do not ensure a sequential programming model. The Spacing field indicate
number of unrelated instructions (such as NOPs or SSNOPs) that should be placed between the first and seco
instructions of the hazard in order to ensure that the effects of the first instruction are seen by the second instr
Entries in the table that are listed as 0 are traditional MIPS hazards which are not hazards on the 4K cores. (MT C
to Timer Interrupt cleared is system dependent since Timer Interrupt is an output of the core that can be returne
core on one of the SI_Int pins. This number is the minimum time due to going through the core’s I/O registers. Ty
implementations will not add any latency to this).

Table 2-6 Instruction Hazards

Instruction Hazards

First Instruction Second Instruction Spacing
(Instructions)

Watch Register Write

Instruction Fetch Matching Watch Register 2

Load/Store Reference Matching Watch
Register 0

TLBWI/TLBWR (4Kc core)

Instruction fetch affected by new page
mapping 3

Load/Store affected by new page mapping 0

TLBP/TLBR 0

TLBR (4Kc core) Move from Coprocessor Zero Register 0

Move to EntryHi (4Kc core) TLBWR/TLBWI/TLBP 1

Move to EntryLo0 or EntryLo1 (4Kc core) TLBWR/TLBWI 0

Move to EntryHi (4Kc core) Load/Store affected by new ASID 1

Move to EntryHi (4Kc core) Instruction fetch affected by new ASID 3

TLBP (4Kc core) Move from Coprocessor Zero Register 0

Move to Index Register TLBR/TLBWI (4Kc core) 1

Change to CU Bits in Status Register Coprocessor Instruction 1

Move to EPC, ErrorPC or DEPC ERET 1

Move to Status Register ERET 0

Set of IP in Cause Register Interrupted Instruction 3

Any Other Move to Coprocessor 0 Registers Instruction Affected by Change 2

CACHE instruction operating on I$ Instruction fetch seeing new cache state 3

LL Move From LLAddr 1

Move to Compare Instruction not seeing TimerInterrupt 4a
26 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

2.12 Instruction Hazards
a. This is the minimum value. Actual value is system-dependent since it is a function of the sequential logic between the SI_TimerInt output
and the external logic which feeds SI_TimerInt back into one of the SI_Int inputs.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 27

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 2 Pipeline
28 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

on unit
4Km

nt to the
ion is a
s active
y (4Kc
l.

l-entry
).
 not

hysical
tual

Km and
Chapter 3

Memory Management

The MIPS32 4K processor cores contain a Memory Management Unit (MMU) that interfaces between the executi
and the cache controller. The MIPS32 4Kc cores contain a Translation Lookaside Buffer (TLB), while the MIPS32
and MIPS32 4Kp cores implement a simpler Fixed Mapping (FM) style MMU.

This chapter contains the following sections:

• Section 3.1, "Introduction"

• Section 3.2, "Modes of Operation"

• Section 3.3, "Translation Lookaside Buffer (4Kc Core Only)"

• Section 3.4, "Virtual to Physical Address Translation (4Kc Core)"

• Section 3.5, "Fixed Mapping MMU (4Km & 4Kp Cores)"

• Section 3.6, "System Control Coprocessor"

3.1 Introduction

The MMU in a 4K processor core will translate any virtual address to a physical address before a request is se
cache controllers for tag comparison or to the bus interface unit for an external memory reference. This translat
very useful feature for operating systems when trying to manage physical memory to accommodate multiple task
in the same memory, possibly on the same virtual address but of course in different locations in physical memor
core only). Other features handled by the MMU are protection of memory areas and defining the cache protoco

In the 4Kc processor core, the MMU is TLB based. The TLB consists of three address translation buffers: a 16 dua
fully associative Joint TLB (JTLB), a 3-entry instruction micro TLB (ITLB), and a 3-entry data micro TLB (DTLB
When an address is translated, the appropriate micro TLB (ITLB or DTLB) is accessed first. If the translation is
found in the micro TLB, the JTLB is accessed. If there is a miss in the JTLB, an exception is taken.

In the 4Km and 4Kp processor cores, the MMU is based on a simple algorithm to translate virtual addresses into p
addresses via a Fixed Mapping (FM) mechanism. These translations are different for various regions of the vir
address space (useg/kuseg, kseg0, kseg1, kseg2/3).

Figure 3-1 shows how the memory management unit interacts with cache accesses in the 4Kc core, whileFigure 3-2
shows how the memory management unit interacts with caches accesses for the 4Km and 4Kp cores. In the 4
4Kp cores, note that the FM MMU replaces the ITLB, DTLB and JTLB found in the 4Kc core.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 29

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 3 Memory Management
Figure 3-1 Address Translation During a Cache Access in the 4Kc Core

Figure 3-2 Address Translation During a Cache Access in the 4Km and 4Kp cores

3.2 Modes of Operation

All 4K processor cores support three modes of operation:

Instruction
Virtual Address
(IVA)

Data
Virtual Address
(DVA)

JTLB

ITLB

Instruction
Cache
RAM

DTLB

Data
Cache
RAM

IVA Entry

Entry
Data
Physical
Address
(DPA)

Instruction
Physical
Address
(IPA)

Tag (IPA)

Tag (DPA)

Comparator

Comparator

Data
Hit/Miss

Instruction
Hit/Miss

Instruction
Virtual Address
(IVA)

Data
Virtual Address
(DVA)

FM MMU

Instruction
Cache
RAM

Data
Cache
RAM

Data
Physical
Address
(DPA)

Instruction
Physical
Address
(IPA)

Tag (IPA)

Tag (DPA)

Comparator

Comparator

Data
Hit/Miss

Instruction
Hit/Miss
30 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

3.2 Modes of Operation

and
sed for

ration.

re has
the virtual
ode,

e address
segment
allowing
• User mode

• Kernel mode

• Debug mode

User mode is most often used for application programs. Kernel mode is typically used for handling exceptions
privileged operating system functions, including CP0 management and I/O device accesses. Debug mode is u
software debugging and most likely occurs within a software development tool.

The address translation performed by the MMU depends on the mode in which the processor is operating.

3.2.1 Virtual Memory Segments

The Virtual memory segments are different depending on the mode of operation.Figure 3-3shows the segmentation for
the 4 GByte (232 bytes) virtual memory space addressed by a 32-bit virtual address, for the three modes of ope

The core enters Kernel mode both at reset and when an exception is recognized. While in Kernel mode, softwa
access to the entire address space, as well as all CP0 registers. User mode accesses are limited to a subset of
address space (0x0000_0000 to 0x7FFF_FFFF) and can be inhibited from accessing CP0 functions. In User m
virtual addresses 0x8000_0000 to 0xFFFF_FFFF are invalid and cause an exception if accessed.

Debug mode is entered on a debug exception. While in Debug mode, the debug software has access to the sam
space and CP0 registers as for Kernel mode. In addition, while in Debug mode the core has access to the debug
dseg. This area overlays part of the kernel segment kseg3. dseg access in Debug mode can be turned on or off,
full access to the entire kseg3 in Debug mode, if so desired.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 31

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 3 Memory Management

he

al to
not yet

lations

he CP0
Figure 3-3 4K Processor Core Virtual Memory Map

Each of the segments shown inFigure 3-3 is either mapped or unmapped. The following two subsections explain t
distinction. ThenSection 3.2.2, "User Mode", Section 3.2.3, "Kernel Mode"andSection 3.2.4, "Debug Mode"specify
which segments are actually mapped and unmapped.

3.2.1.1 Unmapped Segments

An unmapped segment does not use the TLB (4Kc core) or the FM (4Km and 4Kp cores) to translate from virtu
physical address. Especially after reset it is important to have unmapped memory segments, because the TLB is
programmed to perform the translation.

Unmapped segments have a fixed simple translation from virtual to physical address. This is much like the trans
the FM provides for the 4Km and 4Kp cores, but we will still make the distinction.

Except for kseg0, unmapped segments are always uncached. The cacheability of kseg0 is set in the K0 field of t
registerConfig (seeSection 5.2.15, "Config Register (CP0 Register 16, Select 0)").

useg kuseg kuseg

kseg0

kseg1

kseg2

kseg3

kseg2

kseg1

kseg0

kseg3

kseg3

dseg

User Mode Kernel Mode Debug ModeVirtual Address

0x7FFF_FFFF

0x8000_0000

0x9FFF_FFFF

0xBFFF_FFFF

0xDFFF_FFFF

0xF1FF_FFFF

0xF3FF_FFFF

0xFFFF_FFFF

0xA000_0000

0xC000_0000

0xE000_0000

0xF200_0000

0xF400_0000

0x0000_0000
32 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

3.2 Modes of Operation

ysical

ion is

e

le.

ddresses
3.2.1.2 Mapped Segments

A mapped segment does use the TLB (4Kc core) or the FM (4Km and 4Kp cores) to translate from virtual to ph
address.

For the 4Kc core, the translation of mapped segments is handled on a per-page basis. Included in this translat
information defining whether the page is cacheable or not, and the protection attributes that apply to the page.

For the 4Km and 4Kp cores, the mapped segments have a fixed translation from virtual to physical address. Th
cacheability of the segment is defined in the CP0 register Config, fields K23 and KU (seeSection 5.2.15, "Config
Register (CP0 Register 16, Select 0)"). Write protection of segments is not possible during FM translation.

3.2.2 User Mode

In user mode, a single 2 GByte (231bytes) uniform virtual address space called the user segment (useg) is availab
Figure 3-4 shows the location of user mode virtual address space.

Figure 3-4 User Mode Virtual Address Space

The user segment starts at address 0x0000_0000 and ends at address 0x7FFF_FFFF. Accesses to all other a
cause an address error exception.

The processor operates in User mode when theStatus register contains the following bit values:

• UM = 1

• EXL = 0

• ERL = 0

In addition to the above values, the DM bit in theDebug register must be 0.

Table 3-1 lists the characteristics of the useg User mode segments.

0x0000_0000

0x8000_0000

0x7FFF_FFFF

0xFFFF_FFFF

32 bit

Address
Error

2GB
Mapped useg
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 33

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 3 Memory Management

 only
t bit set

e
lation.
s, the

e end
uction
.

ss, as
All valid user mode virtual addresses have their most-significant bit cleared to 0, indicating that user mode can
access the lower half of the virtual memory map. Any attempt to reference an address with the most-significan
while in user mode causes an address error exception.

The system maps all references tousegthrough the TLB (4Kc core) or FM (4Km and 4Kp cores). For the 4Kc core, th
virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address before trans
Bit settings within the TLB entry for the page determine the cacheability of a reference. For the 4Km and 4Kp core
cacheability is set via the KU field of the CP0Config register.

3.2.3 Kernel Mode

The processor operates in Kernel mode when the DM bit in theDebugregister is 0 and theStatusregister contains one
or more of the following values:

• UM = 0

• ERL = 1

• EXL = 1

When a non-debug exception is detected, EXL or ERL will be set and the processor will enter Kernel mode. At th
of the exception handler routine, an Exception Return (ERET) instruction is generally executed. The ERET instr
jumps to the Exception PC, clears ERL, and clears EXL if ERL=0. This may return the processor to User mode

Kernel mode virtual address space is divided into regions differentiated by the high-order bits of the virtual addre
shown inFigure 3-5. Also,Table 3-2 lists the characteristics of the Kernel mode segments.

Table 3-1 User Mode Segments

Address
Bit Value

Status Register Segment

Name

Address Range Segment Size

Bit Value

EXL ERL UM

32-bit

A(31) = 0
0 0 1 useg

0x0000_0000 -->

0x7FFF_FFFF

2 GByte
(231 bytes)
34 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

3.2 Modes of Operation
Figure 3-5 Kernel Mode Virtual Address Space

Table 3-2 Kernel Mode Segments

Address Bit
Values

Status Register Is
One of These Values

Segment
Name

Address Range Segment
Size

UM EXL ERL

A(31) = 0

(UM = 0

or

EXL = 1

or

ERL = 1)

and

DM = 0

kuseg
0x0000_0000

through
0x7FFF_FFFF

2 GBytes
(231 bytes)

A(31:29) = 1002 kseg0
0x8000_0000

through
0x9FFF_FFFF

512 MBytes
(229 bytes)

A(31:29) = 1012 kseg1
0xA000_0000

through
0xBFFF_FFFF

512 MBytes
(229 bytes)

A(31:29) = 1102 kseg2
0xC000_0000

through
0xDFFF_FFFF

512 MBytes
(229 bytes)

A(31:29) = 1112 kseg3
0xE000_0000

through
0xFFFF_FFFF

512 MBytes
(229 bytes)

Kernel virtual address space
Unmapped, 512MB

kuseg

kseg0

kseg1

kseg2

kseg3

Mapped, 2048MB

Kernel virtual address space
Unmapped, Uncached, 512MB

Kernel virtual address space
Mapped, 512MB

Kernel virtual address space
Mapped, 512MB

0x0000_0000

0x8000_0000

0xA000_0000

0xC000_0000

0xE000_0000

0x7FFF_FFFF

0x9FFF_FFFF

0xBFFF_FFFF

0xDFFF_FFFF

0xFFFF_FFFF
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 35

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 3 Memory Management

dress

D field

ce.
e ASID

F.
he virtual

mory (or

e 4Km

-
or core.

 areas,
F_FFFF.
3.2.3.1 Kernel Mode, User Space (kuseg)

In Kernel mode, when the most-significant bit of the virtual address (A31) is cleared, the 32-bit kuseg virtual ad
space is selected and covers the full 231bytes (2 GByte) of the current user address space mapped to addresses
0x0000_0000 - 0x7FFF_FFFF. For the 4Kc core, the virtual address is extended with the contents of the 8-bit ASI
to form a unique virtual address.

When ERL = 1 in theStatusregister, the user address region becomes a 231-byte unmapped and uncached address spa
While in this setting, the kuseg virtual address maps directly to the same physical address, and does not include th
field.

3.2.3.2 Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when the most-significant three bits of the virtual address are 1002, 32-bit kseg0 virtual address space
is selected; it is the 229-byte (512-MByte) kernel virtual space located at addresses 0x8000_0000 - 0x9FFF_FFF
References to kseg0 are unmapped; the physical address selected is defined by subtracting 0x8000_0000 from t
address. The K0 field of theConfig register controls cacheability.

3.2.3.3 Kernel Mode, Kernel Space 1 (kseg1)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 1012, 32-bit kseg1 virtual address
space is selected. kseg1 is the 229-byte (512-MByte) kernel virtual space located at addresses 0xA000_0000 -
0xBFFF_FFFF. References to kseg1 are unmapped; the physical address selected is defined by subtracting
0xA000_0000 from the virtual address. Caches are disabled for accesses to these addresses, and physical me
memory-mapped I/O device registers) are accessed directly.

3.2.3.4 Kernel Mode, Kernel Space 2 (kseg2)

In Kernel mode, when UM = 0, ERL = 1, or EXL = 1 in theStatus register, and DM = 0 in theDebug register, and the
most-significant three bits of the 32-bit virtual address are 1102, 32-bit kseg2 virtual address space is selected. This
229-byte (512-MByte) kernel virtual space is located at physical addresses 0xC000_0000 - 0xDFFF_FFFF in th
and 4Kp processor cores. This space is mapped through the TLB in the 4Kc processor core.

3.2.3.5 Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 1112, the kseg3 virtual address
space is selected. This 229-byte (512-MByte) kernel virtual space is located at physical addresses 0xE000_0000
0xFFFF_FFFF in the 4Km and 4Kp processor cores. This space is mapped through the TLB in the 4Kc process

3.2.4 Debug Mode

Debug mode address space is identical to Kernel mode address space with respect to mapped and unmapped
except for kseg3. In kseg3, a debug segment dseg co-exists in the virtual address range 0xFF20_0000 to 0xFF3
The layout is shown inFigure 3-6.
36 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

3.2 Modes of Operation

obe
 memory

r debug
ith the

ich allows

hown in
Figure 3-6 Debug Mode Virtual Address Space

The dseg is sub-divided into the dmseg segment at 0xFF20_0000 to 0xFF2F_FFFF which is used when the pr
services the memory segment, and the drseg segment at 0xFF30_0000 to 0xFF3F_FFFF which is used when
mapped debug registers are accessed. The subdivision and attributes for the segments are shown inTable 3-3.

Accesses to memory that would normally cause an exception if tried from kernel mode cause the core to re-ente
mode via a debug mode exception. This includes accesses usually causing a TLB exception (4Kc core only), w
result that such accesses are not handled by the usual memory management routines.

The unmapped kseg0 and kseg1 segments from kernel mode address space are available from debug mode, wh
the debug handler to be executed from uncached and unmapped memory.

3.2.4.1 Conditions and Behavior for Access to drseg, EJTAG Registers

The behavior of CPU access to the drseg address range at 0xFF30_0000 to 0xFF3F_FFFF is determined as s
Table 3-4.

Table 3-3 Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces

Segment
Name

Sub-Segment
Name

Virtual Address Generates Physical Address Cache
Attribute

dseg

dmseg

0xFF20_0000

through

0xFF2F_FFFF

dmseg maps to addresses
0x0_0000 - 0xF_FFFF in EJTAG

probe memory space.

drseg maps to the breakpoint
registers 0x0_0000 - 0xF_FFFF

Uncached

drseg

0xFF30_0000

through

0xFF3F_FFFF

Table 3-4 CPU Access to drseg Address Range

Transaction LSNM bit in Debug
register

Access

Load / Store 1 Kernel mode address space (kseg3)

Fetch Don’t care
drseg, see comments below

Load / Store 0

0x0000_0000

0xFF20_0000

0xFF40_0000
0xFFFF_FFFF

dseg

kseg1

kseg0 Unmapped

Mapped if mapped in Kernel Mode
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 37

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 3 Memory Management

egisters
dictable,

ssor is

ebug
If such
 there will
een the

 TLB

nding
ize from
resses

formed

referred

 tag
Debug software is expected to read the debug control register (DCR) to determine which other memory mapped r
exist in drseg. The value returned in response to a read of any unimplemented memory mapped register is unpre
and writes are ignored to any unimplemented register in the drseg. Refer toChapter 9, “EJTAG Debug Support,” on page
119 for more information on the DCR.

The allowed access size is limited for the drseg. Only word size transactions are allowed. Operation of the proce
undefined for other transaction sizes.

3.2.4.2 Conditions and Behavior for Access to dmseg, EJTAG Memory

The behavior of CPU access to the dmseg address range at 0xFF20_0000 to 0xFF2F_FFFF is determined byTable 3-5.
.

The case with access to the dmseg when the ProbEn bit in the DCR register is 0 is not expected to happen. D
software is expected to check the state of the ProbEn bit in DCR register before attempting to reference dmseg.
a reference does happen, the reference hangs until it is satisfied by the probe. The probe can not assume that
never be a reference to dmseg if the ProbEn bit in the DCR register is 0 because there is an inherent race betw
debug software sampling the ProbEn bit as 1 and the probe clearing it to 0.

3.3 Translation Lookaside Buffer (4Kc Core Only)

The following subsections discuss the TLB memory management scheme used in the 4Kc processor core. The
consists of one joint and two micro address translation buffers:

• 16 dual-entry fully associative Joint TLB (JTLB)

• 3-entry fully associative Instruction micro TLB (ITLB)

• 3-entry fully associative Data micro TLB (DTLB)

3.3.1 Joint TLB

The 4Kc core implements a 16 dual-entry, fully associative Joint TLB that maps 32 virtual pages to their correspo
physical addresses. The JTLB is organized as 16 pairs of even and odd entries containing pages that range in s
4-KBytes to 16-MBytes into the 4-GByte physical address space. The purpose of the TLB is to translate virtual add
and their corresponding Address Space Identifier (ASID) into a physical memory address. The translation is per
by comparing the upper bits of the virtual address (along with the ASID bits) against each of the entries in thetagportion
of the JTLB structure. Because this structure is used to translate both instruction and data virtual addresses, it is
to as a “joint” TLB.

The JTLB is organized in page pairs to minimize its overall size. Each virtualtagentry corresponds to two physical data
entries, an even page entry and an odd page entry. The highest order virtual address bit not participating in the

Table 3-5 CPU Access to dmseg Address Range

Transaction ProbEn bit in
DCR register

LSNM bit in
Debug register

Access

Load / Store Don’t care 1 Kernel mode address space (kseg3)

Fetch 1 Don’t care
dmseg

Load / Store 1 0

Fetch 0 Don’t care
See comments below

Load / Store 0 0
38 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

3.3 Translation Lookaside Buffer (4Kc Core Only)

asis, the
comparison is used to determine which of the two data entries is used. Since page size can vary on a page-pair b
determination of which address bits participate in the comparison and which bit is used to make the even-odd
determination must be determined dynamically during the TLB lookup.

Figure 3-7 show the contents of one of the 16 dual-entries in the JTLB.

Figure 3-7 JTLB Entry (Tag and Data)

Table 3-6 andTable 3-7 explain each of the fields in a JTLB entry.

Table 3-6 TLB Tag Entry Fields

Field Name Description

PageMask[24:13]

Page Mask Value. The Page Mask defines the page size by masking the
appropriate VPN2 bits from being involved in a comparison. It is also used to
determine which address bit is used to make the even-odd page (PFN0-PFN1)
determination. See the table below.

The PageMask column above show all the legal values for PageMask. Because
each pair of bits can only have the same value, the physical entry in the JTLB
will only save a compressed version of the PageMask using only 6 bits. This is
however transparent to software, which will always work with a 12 bit field.

VPN2[31:13]

Virtual Page Number divided by 2. This field contains the upper bits of the
virtual page number. Because it represents a pair of TLB pages, it is divided by
2. Bits 31:25 are always included in the TLB lookup comparison. Bits 24:13
are included depending on the page size, defined by PageMask.

G Global Bit. When set, indicates that this entry is global to all processes and/or
threads and thus disables inclusion of the ASID in the comparison.

ASID[7:0] Address Space Identifier. Identifies which process or thread this TLB entry is
associated with.

PageMask[24:13]

D0

G ASID[7:0]

PFN0[31:12] C0[2:0]

D1PFN1[31:12] C1[2:0]

VPN2[31:13]

V0

V1

G
Tag Entry

Data Entries

19 1 8

20 3 1 1

PageMask[11:0] Page Size Even/Odd Bank
Select Bit

0000_0000_0000 4KB VAddr[12]

0000_0000_0011 16KB VAddr[14]

0000_0000_1111 64KB VAddr[16]

0000_0011_1111 256KB VAddr[18]

0000_1111_1111 1MB VAddr[20]

0011_1111_1111 4MB VAddr[22]

1111_1111_1111 16MB VAddr[24]
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 39

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 3 Memory Management

 the

istence
in the

. The
In order to fill an entry in the JTLB, software executes a TLBWI or TLBWR instruction (SeeSection 3.4.3, "TLB
Instructions" on page 45). Prior to invoking one of these instructions, several CP0 registers must be updated with
information to be written to a TLB entry.

• PageMask is set in the CP0PageMask register.

• VPN2 and ASID are set in the CP0EntryHi register.

• PFN0, C0, D0, V0 and G bit are set in the CP0EntryLo0 register.

• PFN1, C1, D1, V1 and G bit are set in the CP0EntryLo1 register.

Note that the global bit “G” is part of bothEntryLo0andEntryLo1. The resulting “G” bit in the JTLB entry is the logical
AND between the two fields inEntryLo0 andEntryLo1. Please refer toChapter 5, “CP0 Registers,” on page 71 for
further details.

The address space identifier (ASID) helps to reduce the frequency of TLB flushing on a context switch. The ex
of the ASID allows multiple processes to exist in both the TLB and instruction caches. The ASID value is stored
EntryHi register and is compared to the ASID value of each entry.

3.3.2 Instruction TLB

The ITLB is a small 3-entry, fully associative TLB dedicated to performing translations for the instruction stream
ITLB only maps 4-Kbyte pages/sub-pages.

Table 3-7 TLB Data Entry Fields

Field Name Description

PFN0[31:12],
PFN1[31:12]

Physical Frame Number. Defines the upper bits of the physical address.
For page sizes larger than 4 KBytes, only a subset of these bits is actually
used.

C0[2:0],
C1[2:0]

Cacheability. Contains an encoded value of the cacheability attributes and
determines whether the page should be placed in the cache or not. The field
is encoded as follows:

D0,
D1

“Dirty” or Write-enable Bit. Indicates that the page has been written,
and/or is writable. If this bit is set, stores to the page are permitted. If the
bit is cleared, stores to the page cause a TLB Modified exception.

V0,
V1

Valid Bit. Indicates that the TLB entry and, thus, the virtual page mapping
are valid. If this bit is set, accesses to the page are permitted. If the bit is
cleared, accesses to the page cause a TLB Invalid exception.

C[2:0] Coherency Attribute

000 Maps to entry 011b*

001 Maps to entry 011b*

010 Uncached

011
Cacheable, noncoherent, write-through,
no write allocated

100 Maps to entry 011b*

101 Maps to entry 011b*

110 Maps to entry 011b*

111 Maps to entry 010b*

Note: * These mappings are not used on the 4K proces-
sor cores but do have meaning in other MIPS
40 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

3.4 Virtual to Physical Address Translation (4Kc Core)

e ITLB,
tion is
s in an

han is

ting
DTLB
access

 with the
 as the

re

uency
red in
The ITLB is managed by hardware and is transparent to software. If a fetch address cannot be translated by th
the JTLB is accessed to attempt to translate it in the following clock cycle. If successful, the translation informa
copied into the ITLB. The ITLB is then re-accessed and the address will be successfully translated. This result
ITLB miss penalty of at least 2 cycles (if the JTLB is busy with other operations, it may take additional cycles).

3.3.3 Data TLB

The DTLB is a small 3-entry, fully associative TLB which provides a faster translation for Load/Store addresses t
possible with the JTLB. The DTLB only maps 4-Kbyte pages/sub-pages.

Like the ITLB, the DTLB is managed by hardware and is transparent to software. Unlike the ITLB, when transla
Load/Store addresses, the JTLB is accessed in parallel with the DTLB. If there is a DTLB miss and a JTLB hit, the
can be reloaded that cycle. The DTLB is then re-accessed and the translation will be successful. This parallel
reduces the DTLB miss penalty to 1 cycle.

3.4 Virtual to Physical Address Translation (4Kc Core)

Converting a virtual address to a physical address begins by comparing the virtual address from the processor
virtual addresses in the TLB. There is a match when the virtual page number (VPN) of the address is the same
VPN field of the entry, and either:

• The Global (G) bit of both the even and odd pages of the TLB entry are set, or

• The ASID field of the virtual address is the same as the ASID field of the TLB entry

This match is referred to as a TLBhit. If there is no match, a TLBmissexception is taken by the processor and softwa
is allowed to refill the TLB from a page table of virtual/physical addresses in memory.

Figure 3-8 shows the logical translation of a virtual address into a physical address.

In this figure the virtual address is extended with an 8-bit address-space identifier (ASID), which reduces the freq
of TLB flushing during a context switch. This 8-bit ASID contains the number assigned to that process and is sto
the CP0EntryHi register.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 41

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 3 Memory Management

nated
n in

virtual
ess

ress
Figure 3-8 Overview of a Virtual-to-Physical Address Translation in the 4Kc Core

If there is a virtual address match in the TLB, the physical frame number (PFN) is output from the TLB and concate
with theOffset, to form the physical address. TheOffsetrepresents an address within the page frame space. As show
Figure 3-8, theOffset does not pass through the TLB.

Figure 3-9shows a flow diagram of the 4Kc core address translation process. The top portion of the figure shows a
address for a 4-KByte page size. The width of theOffsetis defined by the page size. The remaining 20 bits of the addr
represent the virtual page number (VPN), that index the 1M-entry page table.

The bottom portion ofFigure 3-9shows the virtual address for a 16-MByte page size. The remaining 8 bits of the add
represent the VPN, that index the 256-entry page table.

1.Virtual address (VA) represented by
the virtual page number (VPN) is
compared with tag in TLB.

2. If there is a match, the page frame
number (PFN0 or PFN1)
representing the upper bits of the
physical address (PA) is output from
the TLB.

3. The Offset, which does not pass
through the TLB, is then concatenated
with the PFN.

OffsetVPNG ASID

Virtual Address

TLB
Entry

OffsetPFN

TLB

G ASID VPN2

C0 D0 V0 PFN0

PFN1C1 D1 V1

Physical Address
42 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

3.4 Virtual to Physical Address Translation (4Kc Core)

placed
arity of
 from
TLB

in

 the

n, the

n the
, the
r

on.

 the
with
Figure 3-9 32-bit Virtual Address Translation

3.4.1 Hits, Misses, and Multiple Matches

Each JTLB entry contains a tag and two data fields. If a match is found, the upper bits of the virtual address are re
with the page frame number (PFN) stored in the corresponding entry in the data array of the JTLB. The granul
JTLB mappings is defined in terms of TLB pages. The 4Kc core JTLB supports pages of different sizes ranging
4-KB to 16-MB in powers of 4. If a match is found, but the entry is invalid (i.e., the V bit in the data field is 0), a
Invalid exception is taken.

If no match occurs (TLB miss), an exception is taken and software refills the TLB from the page table resident
memory.Figure 3-10 show the translation and exception flow of the TLB.

Software can write over a selected TLB entry or use a hardware mechanism to write into a random entry. TheRandom
register selects which TLB entry to use on a TLBWR. This register decrements almost every cycle, wrapping to
maximum once it’s value is equal to theWiredregister. Thus, TLB entries below theWiredvalue cannot be replaced by
a TLBWR allowing important mappings to be preserved. In order to reduce the possibility for a livelock situatio
Randomregister includes a 10b LFSR that introduces a pseudo-random perturbation into the decrementing.

The 4Kc core implements a TLB write-compare mechanism to ensure that multiple TLB matches do not occur. O
TLB write operation, the VPN2 field to be written is compared with all other entries in the TLB. If a match occurs
4Kc core takes a machine-check exception, sets the TS bit in the CP0Statusregister, and aborts the write operation. Fo
further details on exceptions, please refer toChapter 4, “Exceptions,” on page 49. There is a hidden bit in each TLB entry
that is cleared on a ColdReset. This bit is set once the TLB entry is written and is included in the match detecti
Therefore, uninitialized TLB entries will not cause a TLB shutdown.

Note: This hidden initialization bit leaves the entire JTLB invalid after a ColdReset, eliminating the need to flush
TLB. But, to be compatible with other MIPS processors, it is recommended that software initialize all TLB entries
unique tag values and V bits cleared before the first access to a mapped location.

11
Virtual address with 1M (220) 4-KByte pages

Virtual Address with 256 (28)16-MByte pages

8 bits = 256 pages

20 bits = 1M pages

Virtual-to-physical
translation in TLB

Bit 31 of the virtual address
selects user and kernel
address spaces.

Offset passed unchanged
to physical memory.

Virtual-to-physical
translation in TLB

Offset passed unchanged
to physical memory.

32-bit Physical Address

ASID VPN Offset

PFN0/1 Offset

TLB

TLB

ASID VPN Offset
0233132 2439

313239 012

031

8 8 24

8 20 12
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 43

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 3 Memory Management

regions,
ge sizes
size,

urpose

written
vides a
r, thus
3.4.2 Page Sizes and Replacement Algorithm

To assist in controlling both the amount of mapped space and the replacement characteristics of various memory
the 4Kc core provides two mechanisms. First, the page size can be configured, on a per entry basis, to map pa
ranging from 4 KByte to 16 MByte (in multiples of 4). The CP0 PageMask register is loaded with the desired page
which is then entered into the TLB when a new entry is written. Thus, operating systems can provide special-p
maps. For example, a typical frame buffer can be memory mapped with only one TLB entry.

The second mechanism controls the replacement algorithm when a TLB miss occurs. To select a TLB entry to be
with a new mapping, the 4Kc core provides a random replacement algorithm. However, the processor also pro
mechanism whereby a programmable number of mappings can be locked into the TLB via the CP0 Wired registe
avoiding random replacement. Please refer toSection 5.2.6, "Wired Register (CP0 Register 6, Select 0)" on page 80for
further details.

Figure 3-10 TLB Address Translation Flow in the 4Kc Processor Core

For valid address
space, see the section
describing Modes of
operation in this
chapter.

Virtual Address (Input)

VPN
and

ASID

User
Mode?

NoYes

No

Yes

No

Yes

No

No No

No

No

No

No

Yes

Yes Yes

Yes

Yes

Yes

Yes

Exception

Global

Valid

Dirty

Noncacheable

Physical Address (Output)

User
Address?

Address
Error

Unmapped
Address

kseg0/kseg1
Address

VPN
Match?

 G = 1?

 C=010
or

C=111?

 ASID
Match?

 V = 1?

 D = 1? Write?

 TLB
Modified

 TLB
Invalid

 TLB
Refill

Access
Cache

Access
Main

Memory
44 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

3.5 Fixed Mapping MMU (4Km & 4Kp Cores)

,”

n the
and

Kc TLB
3.4.3 TLB Instructions

Table 3-8lists the 4Kc core’s TLB-related instructions. Refer toChapter 11, “MIPS32 4K Processor Core Instructions
on page 167 for more information on these instructions.

3.5 Fixed Mapping MMU (4Km & 4Kp Cores)

The 4Km and 4Kp cores implement a simple Fixed Mapping (FM) memory management unit that is smaller tha
4Kc TLB and more easily synthesized. Like the 4Kc TLB, the FM performs virtual-to-physical address translation
provides attributes for the different memory segments. Those memory segments which are unmapped in the 4
implementation (kseg0 and kseg1) are translated identically by the FM in the 4Km and 4Kp MMU.

The FM also determines the cacheability of each segment. These attributes are controlled via bits in theConfigregister.
Table 3-9 shows the encoding for the K23 (bits 30:28), KU (bits 27:25) and K0 (bits 2:0) of theConfig register.

In the 4Km and 4Kp cores, no translation exceptions can be taken, although address errors are still possible.
C

Table 3-8 TLB Instructions

Op Code Description of Instruction

TLBP Translation Lookaside Buffer Probe

TLBR Translation Lookaside Buffer Read

TLBWI Translation Lookaside Buffer Write Index

TLBWR Translation Lookaside Buffer Write Random

Table 3-9 Cache Coherency Attributes

Config Register Fields
K23, KU, and K0

Cache Coherency Attribute

0, 1, 3, 4, 5, 6 Cacheable, noncoherent, write through, no write allocate

2, 7 Uncached

Table 3-10 Cacheability of Segments with Block Address Translation

Segment Virtual Address
Range

Cacheability

useg/kuseg
0x0000_0000-

0x7FFF_FFFF

Controlled by the KU field (bits 27:25) of theConfigregister. Refer to
Table 3-9 for the encoding.

kseg0
0x8000_0000-

0x9FFF_FFFF

Controlled by the K0 field (bits 2:0) of theConfig register. SeeTable
3-9 for the encoding.

kseg1
0xA000_0000-

0xBFFF_FFFF
Always uncacheable

kseg2
0xC000_0000-

0xDFFF_FFFF

Controlled by the K23 field (bits 30:28) of theConfigregister. Refer to
Table 3-9 for the encoding.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 45

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 3 Memory Management

own in
if there

ase see
The FM performs a simple translation to map from virtual addresses to physical addresses. This mapping is sh
Figure 3-11. When ERL=1, useg and kuseg become unmapped and uncached. The ERL behavior is the same as
was a JTLB. The ERL mapping is shown inFigure 3-12.

The ERL bit is usually never asserted by software. It is asserted by hardware after a Reset, SoftReset or NMI. Ple
Section 4.6, "Exceptions" on page 54 for further information on exceptions.

Figure 3-11 FM Memory Map (ERL=0) in the 4Km and 4Kp Processor Cores

kseg3
0xE000_0000-

0xFFFF_FFFF

Controlled by K23 field (bits 30:28) of theConfig register. Refer to
Table 3-9 for the encoding.

Table 3-10 Cacheability of Segments with Block Address Translation

Segment Virtual Address
Range

Cacheability

useg/kuseg

useg/kuseg

Virtual Address Physical Address

kseg3

kseg2

kseg1

kseg0

kseg3

kseg2

reserved

kseg0/kseg1

0xE000_0000

0xC000_0000

0xA000_0000

0x8000_0000

0x0000_0000

0xE000_0000

0xC000_0000

0x0000_0000

0x2000_0000

0x4000_0000
46 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

3.6 System Control Coprocessor

ports
sters are
Figure 3-12 FM Memory Map (ERL=1) in the 4Km and 4Kp Processor Cores

3.6 System Control Coprocessor

The System Control Coprocessor (CP0) is implemented as an integral part of the 4K processor cores and sup
memory management, address translation, exception handling, and other privileged operations. Certain CP0 regi
used to support memory management. Refer toChapter 5, “CP0 Registers,” on page 71for more information on the CP0
register set.

0xE000_0000

Physical AddressVirtual Address

kseg3

0xE000_0000

kseg3

kseg2kseg2

0xC000_00000xC000_0000

0xA000_0000

kseg1

reserved

0x8000_00000x8000_0000

kseg0

useg/kuseguseg/kuseg

0x2000_0000

0x0000_00000x0000_0000

kseg0/kseg1
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 47

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 3 Memory Management
48 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

uffer
f these
.

andler)
counter,

an be

branch
in the

elled.
re

ns that
ith the
ar the

ctions
t
ay itself
Chapter 4

Exceptions

All MIPS32 4K processor cores receive exceptions from a number of sources, including translation lookaside b
(TLB) misses (4Kc core only), arithmetic overflows, I/O interrupts, and system calls. When the CPU detects one o
exceptions, the normal sequence of instruction execution is suspended and the processor enters kernel mode

In kernel mode, the core disables interrupts and forces execution of a software exception processor (called a h
located at a fixed address. The handler saves the context of the processor, including the contents of the program
the current operating mode, and the status of the interrupts (enabled or disabled). This context is saved so it c
restored when the exception has been serviced.

When an exception occurs, the core loads theException Program Counter (EPC) register with a location where
execution can restart after the exception has been serviced. The restart location in theEPCregister is the address of the
instruction that caused the exception or, if the instruction was executing in a branch delay slot, the address of the
instruction immediately preceding the delay slot. To distinguish between the two, software must read the BD bit
CP0Cause register.

This chapter contains the following sections:

• Section 4.1, "Exception Conditions"

• Section 4.2, "Exception Priority"

• Section 4.3, "Exception Vector Locations"

• Section 4.4, "General Exception Processing"

• Section 4.5, "Debug Exception Processing"

• Section 4.6, "Exceptions"

• Section 4.7, "Exception Handling and Servicing Flowcharts"

4.1 Exception Conditions

When an exception condition occurs, the relevant instruction and all those that follow it in the pipeline are canc
Accordingly, any stall conditions and any later exception conditions that may have referenced this instruction a
inhibited; there is no benefit in servicing stalls for a cancelled instruction.

When an exception condition is detected on an instruction fetch, the core aborts that instruction and all instructio
follow. When this instruction reaches the W stage, the exception flag causes it to write various CP0 registers w
exception state, change the current program counter (PC) to the appropriate exception vector address, and cle
exception bits of earlier pipeline stages.

This implementation allows all preceding instructions to complete execution and prevents all subsequent instru
from completing. Thus, the value in theEPC(ErrorEPC for errors orDEPCfor debug exceptions) is sufficient to restar
execution. It also ensures that exceptions are taken in the order of execution; an instruction taking an exception m
be killed by an instruction further down the pipeline that takes an exception in a later cycle.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 49

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 4 Exceptions

ns can
4.2 Exception Priority

Table 4-1lists all possible exceptions and the relative priority of each, highest to lowest. Several of these exceptio
happen simultaneously, in that event the exception with the highest priority is the one taken.

Table 4-1 Priority of Exceptions

Exception Description

Reset Assertion of SI_ColdReset signal.

Soft Reset Assertion of SI_Reset signal.

DSS EJTAG Debug Single Step.

DINT EJTAG Debug Interrupt. Caused by the assertion of the external EJ_DINT
input, or by setting the EjtagBrk bit in theECR register.

NMI Asserting edge of SI_NMI signal.

Machine Check TLB write that conflicts with an existing entry (4Kc core).

Interrupt Assertion of unmasked HW or SW interrupt signal.

Deferred Watch Deferred Watch (unmasked by K|DM->!(K|DM) transition).

DIB EJTAG debug hardware instruction break matched.

WATCH A reference to an address in one of the watch registers (fetch).

AdEL
Fetch address alignment error.

User mode fetch reference to kernel address.

TLBL
Fetch TLB miss (4Kc core).

Fetch TLB hit to page with V=0 (4Kc core).

IBE Instruction fetch bus error.

DBp EJTAG Breakpoint (execution of SDBBP instruction).

Sys Execution of SYSCALL instruction.

Bp Execution of BREAK instruction.

CpU Execution of a coprocessor instruction for a coprocessor that is not enabled.

RI Execution of a Reserved Instruction.

Ov Execution of an arithmetic instruction that overflowed.

Tr Execution of a trap (when trap condition is true).

DDBL / DDBS EJTAG Data Address Break (address only) or EJTAG Data Value Break on
Store (address and value).

WATCH A reference to an address in one of the watch registers (data).

AdEL
Load address alignment error.

User mode load reference to kernel address.

AdES
Store address alignment error.

User mode store to kernel address.
50 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

4.3 Exception Vector Locations

are

.

t

4.3 Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to location 0xBFC0_0000. Debug exceptions
vectored to location 0xBFC0_0480 or to location 0xFF20_0200 if the ProbTrap bit is 0 or 1, respectively, in theEJTAG
Control register(ECR). Addresses for all other exceptions are a combination of a vector offset and a base addressTable
4-2gives the base address as a function of the exception and whether the BEV bit is set in theStatusregister.Table 4-3
gives the offsets from the base address as a function of the exception.Table 4-4combines these two tables into one tha
contains all possible vector addresses as a function of the state that can affect the vector selection.

TLBL
Load TLB miss (4Kc core).

Load TLB hit to page with V=0 (4Kc core).

TLBS
Store TLB miss (4Kc core).

Store TLB hit to page with V=0 (4Kc core).

TLB Mod Store to TLB page with D=0 (4Kc core).

DBE Load or store bus error.

DDBL EJTAG data hardware breakpoint matched in load data compare.

Table 4-2 Exception Vector Base Addresses

Exception StatusBEV

0 1

Reset, Soft Reset, NMI 0xBFC0_0000

Debug (with ProbTrap = 0 in theECR) 0xBFC0_0480

Debug (with ProbTrap = 1 in theECR)
0xFF20_0200

(in dmseg handled by probe, and not system memory)

Other 0x8000_0000 0xBFC0_0200

Table 4-1 Priority of Exceptions (Continued)

Exception Description
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 51

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 4 Exceptions

 as

,

CE
4.4 General Exception Processing

With the exception of Reset, Soft Reset, NMI, and Debug exceptions, which have their own special processing
described below, exceptions have the same basic processing flow:

• If the EXL bit in theStatus register is cleared, theEPC register is loaded with the PC at which execution will be
restarted and the BD bit is set appropriately in theCauseregister. If the instruction is not in the delay slot of a branch
the BD bit inCause will be cleared and the value loaded into theEPC register is the current PC. If the instruction is
in the delay slot of a branch, the BD bit inCause is set andEPC is loaded with PC-4. If the EXL bit in theStatus
register is set, theEPC register is not loaded and the BD bit is not changed in theCause register.

• The CE and ExcCode fields of theCause registers are loaded with the values appropriate to the exception. The
field is loaded, but not defined, for any exception type other than a coprocessor unusable exception.

• The EXL bit is set in theStatus register.

Table 4-3 Exception Vector Offsets

Exception Vector Offset

TLB refill, EXL = 0 (4Kc core) 0x000

Reset, Soft Reset, NMI 0x000 (uses reset base address)

General Exception 0x180

Interrupt,CauseIV = 1 0x200

Table 4-4 Exception Vectors

Exception BEV EXL IV EJTAG
ProbTrap

Vector

Reset, Soft Reset, NMI x x x x 0xBFC0_0000

Debug x x x 0 0xBFC0_0480

Debug x x x 1 0xFF20_0200 (in dmseg)

TLB Refill (4Kc core) 0 0 x x 0x8000_0000

TLB Refill (4Kc core) 0 1 x x 0x8000_0180

TLB Refill (4Kc core) 1 0 x x 0xBFC0_0200

TLB Refill (4Kc core) 1 1 x x 0xBFC0_0380

Interrupt 0 0 0 x 0x8000_0180

Interrupt 0 0 1 x 0x8000_0200

Interrupt 1 0 0 x 0xBFC0_0380

Interrupt 1 0 1 x 0xBFC0_0400

All others 0 x x x 0x8000_0180

All others 1 x x x 0xBFC0_0380

Note: ‘x’ denotes don’t care
52 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

4.5 Debug Exception Processing

andler

iption

DBD

f a
• The processor is started at the exception vector.

The value loaded intoEPCrepresents the restart address for the exception and need not be modified by exception h
software in the normal case. Software need not look at the BD bit in theCause register unless is wishes to identify the
address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in the descr
of each exception type below.

Operation:

if Status EXL = 0 then
if InstructionInBranchDelaySlot then

EPC <- PC - 4
CauseBD <- 1

else
EPC <- PC
CauseBD <- 0

endif
if ExceptionType = TLBRefill then

vectorOffset <- 0x000
elseif (ExceptionType = Interrupt) and
(Cause IV = 1) then

vectorOffset <- 0x200
else

vectorOffset <- 0x180
endif

else
vectorOffset <- 0x180

endif
CauseCE <- FaultingCoprocessorNumber
CauseExcCode <- ExceptionType
Status EXL <- 1
if Status BEV = 1 then

PC <- 0xBFC0_0200 + vectorOffset
else

PC <- 0x8000_0000 + vectorOffset
endif

4.5 Debug Exception Processing

All debug exceptions have the same basic processing flow:

• TheDEPCregister is loaded with the program counter (PC) value at which execution will be restarted and the
bit is set appropriately in theDebug register. The value loaded into theDEPC register is the current PC if the
instruction is not in the delay slot of a branch, or the PC-4 of the branch if the instruction is in the delay slot o
branch.

• The DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bits at [5:0]) in theDebugregister are updated appropriately
depending on the debug exception type.

• Halt and Doze bits in theDebug register are updated appropriately.

• DM bit in theDebug register is set to 1.

• The processor is started at the debug exception vector.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 53

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 4 Exceptions

debug

) in

obTrap

e.
ines,
m
 following
The value loaded intoDEPCrepresents the restart address for the debug exception and need not be modified by the
exception handler software in the usual case. Debug software need not look at the DBD bit in theDebugregister unless
it wishes to identify the address of the instruction that actually caused the debug exception.

A unique debug exception is indicated through the DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bits at [5:0]
theDebugregister.

No other CP0 registers or fields are changed due to the debug exception, thus no additional state is saved.

Operation:

if InstructionInBranchDelaySlot then
DEPC <- PC-4
DebugDBD <- 1

else
DEPC <- PC
DebugDBD <- 0

endif
DebugD* bits at at [5:0] <- DebugExceptionType
DebugHalt <- HaltStatusAtDebugException
DebugDoze <- DozeStatusAtDebugException
DebugDM <- 1
if EJTAGControlRegister ProbTrap = 1 then

PC <- 0xFF20_0200
else

PC <- 0xBFC0_0480
endif

The same debug exception vector location is used for all debug exceptions. The location is determined by the Pr
bit in the EJTAG Control register (ECR), as shown inTable 4-5.

4.6 Exceptions

The following subsections describe each of the exceptions listed in the same sequence as shown inTable 4-1.

4.6.1 Reset Exception

A reset exception occurs when theSI_ColdReset signal is asserted to the processor. This exception is not maskabl
When a Reset exception occurs, the processor performs a full reset initialization, including aborting state mach
establishing critical state, and generally placing the processor in a state in which it can execute instructions fro
uncached, unmapped address space. On a Reset exception, the state of the processor in not defined, with the
exceptions:

• TheRandom register is initialized to the number of TLB entries - 1 (4Kc core).

• TheWired register is initialized to zero (4Kc core).

• TheConfig register is initialized with its boot state.

Table 4-5 Debug Exception Vector Addresses

ProbTrap bit in
ECR Register

Debug Exception Vector Address

0 0xBFC0_0480

1 0xFF20_0200 in dmseg
54 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

4.6 Exceptions

uction

hen
et
 the
 cache, or
ent. In

uction
• The RP, BEV, TS, SR, NMI, and ERL fields of theStatus register are initialized to a specified state.

• The I, R, and W fields of theWatchLo register are initialized to 0.

• TheErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instr
in the delay slot of a branch. Otherwise, theErrorEPC register is loaded with PC. Note that this value may or may
not be predictable.

• PC is loaded with 0xBFC0_0000.

Cause Register ExcCode Value:

None

Additional State Saved:

None

Entry Vector Used:

Reset (0xBFC0_0000)

Operation:

Random <- TLBEntries - 1
Wired <- 0
Config <- ConfigurationState
Status RP <- 0
Status BEV <- 1
Status TS <- 0
Status SR <- 0
Status NMI <- 0
Status ERL <- 1
WatchLo I <- 0
WatchLo R <- 0
WatchLo W <- 0
if InstructionInBranchDelaySlot then

ErrorEPC <- PC - 4
else

ErrorEPC <- PC
endif
PC <- 0xBFC0_0000

4.6.2 Soft Reset Exception

A soft reset exception occurs when theSI_Resetsignal is asserted to the processor. This exception is not maskable. W
a soft reset exception occurs, the processor performs a subset of the full reset initialization. Although a soft res
exception does not unnecessarily change the state of the processor, it may be forced to do so in order to place
processor in a state in which it can execute instructions from uncached, unmapped address space. Since bus,
other operations may be interrupted, portions of the cache, memory, or other processor state may be inconsist
addition to any hardware initialization required, the following state is established on a soft reset exception:

• The BEV, TS, SR, NMI, and ERL fields of theStatus register are initialized to a specified state.

• TheErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instr
in the delay slot of a branch. Otherwise, theErrorEPC register is loaded with PC. Note that this value may or may
not be predictable.

• PC is loaded with 0xBFC0_0000.

Cause Register ExcCode Value:

None
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 55

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 4 Exceptions

en

tion in
 register,

he next
ction
er set
 step.

hough
taken on
turning

tion, and
e the

ons,
Additional State Saved:

None

Entry Vector Used:

Reset (0xBFC0_0000)

Operation:

Status BEV <- 1
Status TS <- 0
Status SR <- 1
Status NMI <- 0
Status ERL <- 1
if InstructionInBranchDelaySlot then

ErrorEPC <- PC - 4
else

ErrorEPC <- PC
endif
PC <- 0xBFC0_0000

4.6.3 Debug Single Step Exception

A debug single step exception occurs after the CPU has executed one/two instructions in non-debug mode, wh
returning to non-debug mode after debug mode. One instruction is allowed to execute when returning to a non
jump/branch instruction, otherwise two instructions are allowed to execute since the jump/branch and the instruc
the delay slot are executed as one step. Debug single step exceptions are enabled by the SSt bit in the Debug
and are always disabled for the first one/two instructions after a DERET.

The DEPC register points to the instruction on which the debug single step exception occurred, which is also t
instruction to single step or execute when returning from debug mode. So the DEPC will not point to the instru
which has just been single stepped, but rather the following instruction. The DBD bit in the Debug register is nev
for a debug single step exception, since the jump/branch and the instruction in the delay slot is executed in one

Exceptions occurring on the instruction(s) executed with debug single step exception enabled are taken even t
debug single step was enabled. For a normal exception (other than reset), a debug single step exception is then
the first instruction in the normal exception handler. Debug exceptions are unaffected by single step mode, e.g. re
to a SDBBP instruction with debug single step exceptions enabled causes a debug software breakpoint excep
the DEPC will point to the SDBBP instruction. However, returning to an instruction (not jump/branch) just befor
SDBBP instruction, causes a debug single step exception with the DEPC pointing to the SDBBP instruction.

To ensure proper functionality of single step, the debug single step exception has priority over all other excepti
except reset and soft reset.

Debug Register Debug Status Bit Set

DSS

Additional State Saved

None

Entry Vector Used

Debug exception vector
56 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

4.6 Exceptions

th no
ue
g in the

t
emory,

uction
4.6.4 Debug Interrupt Exception

A debug interrupt exception is either caused by the EjtagBrk bit in theEJTAG Control register (controlled through the
TAP), or caused by the debug interrupt request signal to the CPU.

The debug interrupt exception is an asynchronous debug exception which is taken as soon as possible, but wi
specific relation to the executed instructions. TheDEPCregister is set to the instruction where execution should contin
after the debug handler is through. The DBD bit is set based on whether the interrupted instruction was executin
delay slot of a branch.

Debug Register Debug Status Bit Set

DINT

Additional State Saved

None

Entry Vector Used

Debug exception vector

4.6.5 Non-Maskable Interrupt (NMI) Exception

A non-maskable interrupt exception occurs when theSI_NMIsignal is asserted to the processor.SI_NMI is an edge
sensitive signal - only one NMI exception will be taken each time it is asserted. An NMI exception occurs only a
instruction boundaries, so it does not cause any reset or other hardware initialization. The state of the cache, m
and other processor states are consistent and all registers are preserved, with the following exceptions:

• The BEV, TS, SR, NMI, and ERL fields of theStatus register are initialized to a specified state.

• TheErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instr
in the delay slot of a branch. Otherwise, theErrorEPC register is loaded with PC.

• PC is loaded with 0xBFC0_0000.

Cause Register ExcCode Value:

None

Additional State Saved:

None

Entry Vector Used:

Reset (0xBFC0_0000)

Operation:

Status BEV <- 1
Status TS <- 0
Status SR <- 0
Status NMI <- 1
Status ERL <- 1
if InstructionInBranchDelaySlot then

ErrorEPC <- PC - 4
else

ErrorEPC <- PC
endif
PC <- 0xBFC0_0000
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 57

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 4 Exceptions

causes

n a

t at the
e

t the
before
st wait

ruction.
e

4.6.6 Machine Check Exception (4Kc core)

A machine check exception occurs when the processor detects an internal inconsistency. The following condition
a machine check exception;

• The detection of multiple matching entries in the TLB in a TLB-based MMU. The core detects this condition o
TLB write and prevents the write from being completed. The TS bit in theStatus register is set to indicate this
condition. This bit is only a status flag and does not affect the operation of the device. Software clears this bi
appropriate time. This condition is resolved by flushing the conflicting TLB entries. The TLB write can then b
completed.

Cause Register ExcCode Value:

MCheck

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

4.6.7 Interrupt Exception

The interrupt exception occurs when one or more of the eight interrupt requests is enabled by theStatusregister and the
interrupt input is asserted. The delay from assertion of an unmasked interrupt to fetch of the first instructions a
exception vector is a minimum of 5 clock cycles. More may be needed if a committed instruction has to complete
the exception can be taken. A SYNC instruction which has already started flushing the cache and write buffers mu
until this is completed before the interrupt exception can be taken.

Register ExcCode Value:

Int

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180) if the IV bit in theCause register is 0;
interrupt vector (offset 0x200) if the IV bit in theCause register is 1.

4.6.8 Debug Instruction Break Exception

A debug instruction break exception occurs when an instruction hardware breakpoint matches an executed inst
TheDEPC register and DBD bit in theDebug register indicates the instruction that caused the instruction hardwar
breakpoint to match. This exception can only occur if instruction hardware breakpoints are implemented.

Debug Register Debug Status Bit Set:

DIB

Table 4-6 Register States an Interrupt Exception

Register State Value

CauseIP indicates the interrupts that are pending.
58 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

4.6 Exceptions

 data

ly

 an

f the

ondition
access

sor mode
Additional State Saved:

None

Entry Vector Used:

Debug exception vector

4.6.9 Watch Exception — Instruction Fetch or Data Access

The Watch facility provides a software debugging vehicle by initiating a watch exception when an instruction or
reference matches the address information stored in theWatchHi andWatchLo registers. A Watch exception is taken
immediately if the EXL and ERL bits of theStatus register are both zero and the DM bit of theDebugis also zero. If
any of those bits is a one at the time that a watch exception would normally be taken, the WP bit in theCauseregister is
set, and the exception is deferred until both all three bits are zero. Software may use the WP bit in theCauseregister to
determine if theEPC register points at the instruction that caused the watch exception, or if the exception actual
occurred while in kernel mode.

The Watch exception can occur on either an instruction fetch or a data access. Watch exceptions that occur on
instruction fetch have a higher priority than watch exceptions that occur on a data access.

Register ExcCode Value:

WATCH

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

4.6.10 Address Error Exception — Instruction Fetch/Data Access

An address error exception occurs on an instruction or data access when an attempt is made to execute one o
following:

• Fetch an instruction, load a word, or store a word that is not aligned on a word boundary

• Load or store a halfword that is not aligned on a halfword boundary

• Reference the kernel address space from user mode

Note that in the case of an instruction fetch that is not aligned on a word boundary, PC is updated before the c
is detected. Therefore, both EPC and BadVAddr point to the unaligned instruction address. In the case of a data
the exception is taken if either an unaligned address or an address that was inaccessible in the current proces
was referenced by a load or store instruction.

Table 4-7 Register States on a Watch Exception

Register State Value

CauseWP

Indicates that the watch exception was deferred until after
StatusEXL, StatusERL, and DebugDM were zero. This bit
directly causes a watch exception, so software must clear
this bit as part of the exception handler to prevent a watch
exception loop at the end of the current handler
execution.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 59

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 4 Exceptions

U

Cause Register ExcCode Value:

ADEL: Reference was a load or an instruction fetch

ADES: Reference was a store

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

4.6.11 TLB Refill Exception — Instruction Fetch or Data Access (4Kc core)

During an instruction fetch or data access, a TLB refill exception occurs when no TLB entry in a TLB-based MM
matches a reference to a mapped address space and the EXL bit is 0 in theStatusregister. Note that this is distinct from
the case in which an entry matches but has the valid bit off. In that case, a TLB Invalid exception occurs.

Cause Register ExcCode Value:

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

Additional State Saved:

Entry Vector Used:

TLB refill vector (offset 0x000) if StatusEXL = 0 at the time of exception;

general exception vector (offset 0x180) if StatusEXL = 1 at the time of exception

Table 4-8 CP0 Register States on an Address Exception Error

Register State Value

BadVAddr failing address

ContextVPN2 UNPREDICTABLE

EntryHiVPN2 UNPREDICTABLE (4Kc core)

EntryLo0 UNPREDICTABLE (4Kc core)

EntryLo1 UNPREDICTABLE (4Kc core)

Table 4-9 CP0 Register States on a TLB Refill Exception

Register State Value

BadVAddr failing address

Context The BadVPN2 fields contains VA31:13 of the failing
address

EntryHi
The VPN2 field contains VA31:13of the failing address;
the ASID field contains the ASID of the reference that
missed

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
60 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

4.6 Exceptions

 the

as the

 an
struction
rror

rs, such
r
ycle.
4.6.12 TLB Invalid Exception — Instruction Fetch or Data Access (4Kc core)

During an instruction fetch or data access, a TLB invalid exception occurs in one of the following cases:

• No TLB entry in a TLB-based MMU matches a reference to a mapped address space; and the EXL bit is 1 in
Status register.

• A TLB entry in a TLB-based MMU matches a reference to a mapped address space, but the matched entry h
valid bit off.

• The virtual address is greater than or equal to the bounds address in a FM-based MMU.

Cause Register ExcCode Value:

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

4.6.13 Bus Error Exception — Instruction Fetch or Data Access

A bus error exception occurs when an instruction or data access makes a bus request (due to a cache miss or
uncacheable reference) and that request terminates in an error. The bus error exception can occur on either an in
fetch or a data access. Bus error exceptions that occur on an instruction fetch have a higher priority than bus e
exceptions that occur on a data access.

Bus errors taken on the requested (critical) word of an instruction fetch or data load are precise. Other bus erro
as stores or non-critical words of a burst read, can be imprecise. These errors are taken when the EB_RBErr o
EB_WBErr signals are asserted and may occur on an instruction that was not the source of the offending bus c

Cause Register ExcCode Value:

IBE: Error on an instruction reference

DBE: Error on a data reference

Additional State Saved:

None

Table 4-10 CP0 Register States on a TLB Invalid Exception

Register State Value

BadVAddr failing address

Context The BadVPN2 field contains VA31:13 of the failing
address

EntryHi
The VPN2 field contains VA31:13 of the failing address;
the ASID field contains the ASID of the reference that
missed

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 61

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 4 Exceptions

system

. A

priority.
ed.
Entry Vector Used:

General exception vector (offset 0x180)

4.6.14 Debug Software Breakpoint Exception

A debug software breakpoint exception occurs when an SDBBP instruction is executed. TheDEPC register and DBD
bit in theDebug register will indicate the SDBBP instruction that caused the debug exception.

Debug Register Debug Status Bit Set:

DBp

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

4.6.15 Execution Exception — System Call

The system call exception is one of the six execution exceptions. All of these exceptions have the same priority. A
call exception occurs when a SYSCALL instruction is executed.

Cause Register ExcCode Value:

Sys

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

4.6.16 Execution Exception — Breakpoint

The breakpoint exception is one of the six execution exceptions. All of these exceptions have the same priority
breakpoint exception occurs when a BREAK instruction is executed.

Cause Register ExcCode Value:

Bp

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

4.6.17 Execution Exception — Reserved Instruction

The reserved instruction exception is one of the six execution exceptions. All of these exceptions have the same
A reserved instruction exception occurs when a reserved or undefined major opcode or function field is execut
62 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

4.6 Exceptions

ame
for one

ity. An

eption
Cause Register ExcCode Value:

RI

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

4.6.18 Execution Exception — Coprocessor Unusable

The coprocessor unusable exception is one of the six execution exceptions. All of these exceptions have the s
priority. A coprocessor unusable exception occurs when an attempt is made to execute a coprocessor instruction
of the following:

• a corresponding coprocessor unit that has not been marked usable by setting its CU bit in theStatus register

• CP0 instructions, when the unit has not been marked usable, and the processor is executing in user mode

Cause Register ExcCode Value:

CpU

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

4.6.19 Execution Exception — Integer Overflow

The integer overflow exception is one of the six execution exceptions. All of these exceptions have the same prior
integer overflow exception occurs when selected integer instructions result in a 2’s complement overflow.

Cause Register ExcCode Value:

Ov

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

4.6.20 Execution Exception — Trap

The trap exception is one of the six execution exceptions. All of these exceptions have the same priority. A trap exc
occurs when a trap instruction results in a TRUE value.

Table 4-11 Register States on a Coprocessor Unusable Exception

Register State Value

CauseCE unit number of the coprocessor being referenced
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 63

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 4 Exceptions

executed
t
s not
handler.

ing
Cause Register ExcCode Value:

Tr

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

4.6.21 Debug Data Break Exception

A debug data break exception occurs when a data hardware breakpoint matches the load/store transaction of an
load/store instruction. TheDEPCregister and DBD bit in theDebugregister will indicate the load/store instruction tha
caused the data hardware breakpoint to match. The load/store instruction that caused the debug exception ha
completed e.g. not updated the register file, and the instruction can be re-executed after returning from the debug

Debug Register Debug Status Bit Set:

DDBL for a load instruction or DDBS for a store instruction

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

4.6.22 TLB Modified Exception — Data Access (4Kc core)

During a data access, a TLB modified exception occurs on a store reference to a mapped address if the follow
condition is true:

• The matching TLB entry in a TLB-based MMU is valid, but not dirty.

Cause Register ExcCode Value:

Mod

Additional State Saved:

Table 4-12 Register States on a TLB Modified Exception

Register State Value

BadVAddr failing address

Context The BadVPN2 field contains VA31:13 of the failing
address.

EntryHi
The VPN2 field contains VA31:13 of the failing address;
the ASID field contains the ASID of the reference that
missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
64 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

4.7 Exception Handling and Servicing Flowcharts

:

e (SW).
served
ust be
. The
Entry Vector Used:

General exception vector (offset 0x180)

4.7 Exception Handling and Servicing Flowcharts

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their handlers

• General exceptions and their exception handler

• TLB miss exceptions and their exception handler (4Kc core)

• Reset, soft reset and NMI exceptions, and a guideline to their handler

• Debug exceptions

Generally speaking, the exceptions are handled by hardware (HW); the exceptions are then serviced by softwar
Note that unexpected debug exceptions to the debug exception vector at 0xBFC0_0200 may be viewed as a re
instruction since uncontrolled execution of a SDBBP instruction caused the exception. The DERET instruction m
used at return from the debug exception handler, in order to leave debug mode and return to non-debug mode
DERET instruction returns to the address in theDEPC register.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 65

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 4 Exceptions
Figure 4-1 General Exception Handler (HW)

To General Exception Servicing Guidelines

=1 (bootstrap)=0 (normal)
Status.BEV

To General Exception Servicing Guidelines

Comments

PC <- 0x8000_0000 + 180
(unmapped, cached)

PC <- 0xBFC0_0200 + 180
(unmapped, uncached)

EXL <- 1

EPC <- (PC - 4)
Cause.BD <- 1

EPC <- PC
Cause.BD <- 0

Instr. in
Br.Dly. Slot?

=0

Processor forced to Kernel
Mode & interrupt disabled

=0

=1
Check if exception within

another exception EXL

EntryHi and Context are set only for
TLB Invalid, Modified, & Refill
exceptions (4Kc core only). BadVA
is set only for TLB Invalid, Modified,
and Refill exceptions (4Kc core
only). Note: not set on Bus Errors.

EntryHi <- VPN2, ASID
Context <- VPN2

Set Cause EXCCode,CE
BadVA <- VA

Exceptions other than Reset, Soft Reset, NMI, or first-level TLB miss
(4Kc core only). Note: Interrupts can be masked by IE or IMs, and
Watch is masked if EXL = 1.
66 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

4.7 Exception Handling and Servicing Flowcharts
Figure 4-2 General Exception Servicing Guidelines (SW)

ERET

MTC0 -
EPC,STATUS

EXL = 1

Service Code

* ERET is not allowed in the branch delay slot of
another Jump Instruction
* Processor does not execute the instruction
which is in the ERET’s branch delay slot
* PC <- EPC; EXL <- 0
* LLbit <- 0

Check Cause value & Jump to
appropriate Service Code

* After EXL=0, all exceptions allowed.
(except interrupt if masked by IE)

(Optional - only to enable Interrupts while keeping
Kernel Mode)

MTC0 -
Set Status bits:

UM <- 0, EXL <-0,
IE<-1

MFC0 -
Context, EPC, Status, Cause

 * Unmapped vector so TLBMod, TLBInv, or TLB
Refill exceptions not possible (4Kc core only)
* EXL=1 so Watch, Interrupt exceptions disabled
* OS/System to avoid all other exceptions
* Only Reset, Soft Reset, NMI exceptions possible

Comments
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 67

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 4 Exceptions
Figure 4-3 TLB Miss Exception Handler (HW) — 4Kc Core only

To TLB Exception Servicing Guidelines

Vec. Off. = 0x180

EPC <- (PC - 4)
Cause.BD <- 1

EPC <- PC
Cause.BD <- 0

Vec. Off. = 0x000

EXL <- 1

Points to General Exception

Processor forced to Kernel
Mode & interrupt disabled

= 0

= 1 (bootstrap)= 0 (normal)

PC <- 0x8000_0000 +
Vec.Off.(unmapped. cached)

PC <- 0xBFC0_0200 +
Vec.Off.(unmapped. uncached)

Status.BEV

Check if exception within
another exception= 1= 1

= 0

EXL EXL

EntryHi <- VPN2, ASID
Context <- VPN2

Set Cause EXCCode,CE
BadVA <- VA

Instr. in
Br.Dly. Slot?

noyes
68 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

4.7 Exception Handling and Servicing Flowcharts
Figure 4-4 TLB Exception Servicing Guidelines (SW) — 4Kc Core only

Comments

ERET

Service Code

MFC0 -CONTEXT

 * Unmapped vector so TLBMod, TLBInv, or TLB
Refill exceptions not possible
* EXL=1 so Watch, Interrupt exceptions disabled
* OS/System to avoid all other exceptions
* Only Reset, Soft Reset, NMI exceptions possible

* Load the mapping of the virtual address in Context
Reg. Move it to EntryLo and write into the TLB
* There could be a TLB miss again during the
mapping of the data or instruction address. The
processor will jump to the general exception vector
since the EXL is 1. (Option to complete the first level
refill in the general exception handler or ERET to the
original instruction and take the exception again)

* ERET is not allowed in the branch delay slot of
another Jump Instruction
* Processor does not execute the instruction which is
in the ERET’s branch delay slot
* PC <- EPC; EXL <- 0
* LLbit <- 0
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 69

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 4 Exceptions
Figure 4-5 Reset, Soft Reset and NMI Exception Handling and Servicing Guidelines

Status:
BEV <- 1
TS <- 0
SR <- 1/0
NMI <- 0/1
ERL <- 1

(Optional)

Reset Service CodeSoft Reset Service Code

NMI Service Code

ERET

=0

=1

=0

=1

Status.SR

Status.NMI

PC <- 0xBFC0_0000

ErrorEPC <- PC

Random <- TLBENTRIES - 1 (4Kc core only)
Wired <- 0 (4Kc core only)
Config <- Reset state
Status:
RP <- 0
BEV <- 1
TS <- 0
SR <- 0
NMI <- 0
ERL <- 1
WatchLo:
I,R,W <- 0

Reset Exception

Soft Reset or NMI Exception

R
es

et
, S

of
t R

es
et

 &
 N

M
I E

xc
ep

tio
n

H
an

dl
in

g
(H

W
)

R
es

et
,S

of
tR

es
et

&
N

M
IS

er
vi

ci
ng

G
ui

de
lin

es
 (

S
W

)

70 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

upports
ter has a

TC0)

ter.
Chapter 5

CP0 Registers

The System Control Coprocessor (CP0) provides the register interface to the MIPS32 4K processor cores and s
memory management, address translation, exception handling, and other privileged operations. Each CP0 regis
unique number that identifies it; this number is referred to as theregister number. For instance, thePageMaskregister is
register number 5. For more information on the EJTAG registers, refer toChapter 9, “EJTAG Debug Support.”

After updating a CP0 register, there is a hazard period of zero or more instructions from the update instruction (M
and until the effect of the update has taken place in the core. Please refer toChapter 2, “Pipeline,” for further detail on
CP0 hazards.

The current chapter contains the following sections:

• Section 5.1, "CP0 Register Summary"

• Section 5.2, "CP0 Registers"

5.1 CP0 Register Summary

Table 5-1 lists the CP0 registers in numerical order. The individual registers are described throughout this chap

Table 5-1 CP0 Registers

Register
Number

Register Name Function

0 Indexa Index into the TLB array (4Kc core). This register is reserved in
the 4Kp and 4Km cores.

1 Randoma Randomly generated index into the TLB array (4Kc core). This
register is reserved in the 4Kp and 4Km cores.

2 EntryLo0a
Low-order portion of the TLB entry for even-numbered virtual
pages (4Kc core). This register is reserved in the 4Kp and 4Km
cores.

3 EntryLo1a
Low-order portion of the TLB entry for odd-numbered virtual
pages (4Kc core). This register is reserved in the 4Kp and 4Km
cores.

4 Contextb Pointer to page table entry in memory (4Kc core). This register
is reserved in the 4Kp and 4Km cores.

5 PageMaska Controls the variable page sizes in TLB entries (4Kc core). This
register is reserved in the 4Kp and 4Km cores.

6 Wireda Controls the number of fixed (“wired”) TLB entries (4Kc core).
This register is reserved in the 4Kp and 4Km cores.

7 Reserved Reserved

8 BadVAddrb Reports the address for the most recent address-related
exception

9 Countb Processor cycle count
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 71

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 5 CP0 Registers
10 EntryHia High-order portion of the TLB entry (4Kc core). This register is
reserved in the 4Kp and 4Km cores.

11 Compareb Timer interrupt control

12 Statusb Processor status and control

13 Causeb Cause of last exception

14 EPCb Program counter at last exception

15 PRId Processor identification and revision

16 Config/Config1 Configuration register

17 LLAddr Load linked address

18 WatchLob Watchpoint address (low order)

19 WatchHib Watchpoint address (high order) and mask

20 - 22 Reserved Reserved

23 Debugc Debug control and exception status

24 DEPCc Program counter at last debug exception

25 Reserved Reserved

26 ErrCtl Controls access to data and SPRAM arrays for CACHE
instruction

27 Reserved Reserved

28 TagLo/DataLo Low-order portion of cache tag interface

29 Reserved Reserved

30 ErrorEPCb Program counter at last error

31 DESAVEc Debug handler scratchpad register

a. Registers used in memory management.

b. Registers used in exception processing.

c. Registers used in debug.

Table 5-1 CP0 Registers (Continued)

Register
Number

Register Name Function
72 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

5.2 CP0 Registers

with the

t state of
5.2 CP0 Registers

The CP0 registers provide the interface between the ISA and the architecture. Each register is discussed below,
registers presented in numerical order, first by register number, then by select field number.

For each register described below, field descriptions include the read/write properties of the field, and the rese
the field. For the read/write properties of the field, the following notation is used:

Table 5-2 CP0 Register Field Types

Read/Write
Notation

Hardware Interpretation Software Interpretation

R/W

A field in which all bits are readable and writable by software and, potentially, by hardware.

Hardware updates of this field are visible by software read. Software updates of this field are
visible by hardware read.

If the reset state of this field is “Undefined,” either software or hardware must initialize the value
before the first read will return a predictable value. This should not be confused with the formal
definition of UNDEFINED behavior.

R

A field that is either static or is updated only by
hardware.

If the Reset State of this field is either “0” or
“Preset”, hardware initializes this field to zero
or to the appropriate state, respectively, on
powerup.

If the Reset State of this field is “Undefined”,
hardware updates this field only under those
conditions specified in the description of the
field.

A field to which the value written by software
is ignored by hardware. Software may write
any value to this field without affecting
hardware behavior. Software reads of this field
return the last value updated by hardware.

If the Reset State of this field is “Undefined,”
software reads of this field result in an
UNPREDICTABLE value except after a
hardware update done under the conditions
specified in the description of the field.

0 A field that hardware does not update, and for
which hardware can assume a zero value.

A field to which the value written by software
must be zero. Software writes of non-zero
values to this field may result in UNDEFINED
behavior of the hardware. Software reads of
this field return zero as long as all previous
software writes are zero.

If the Reset State of this field is “Undefined,”
software must write this field with zero before
it is guaranteed to read as zero.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 73

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 5 CP0 Registers

, and
B

ritten
5.2.1 Index Register (CP0 Register 0, Select 0)

TheIndex register is a 32-bit read/write register that contains the index used to access the TLB for TLBP, TLBR
TLBWI instructions. The width of the index field is implementation-dependent as a function of the number of TL
entries that are implemented. The minimum value for TLB-based MMUs isCeiling(Log2(TLBEntries)).

The operation of the processor is UNDEFINED if a value greater than or equal to the number of TLB entries is w
to theIndex register.

This register is only valid with the TLB (4Kc core). It is reserved if the FM is implemented (4Km and 4Kp).

Index Register Format
31 30 4 3 0

P 0 Index

Table 5-3 Index Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

P 31 Probe Failure. Set to 1 when the previous TLBProbe
(TLBP) instruction failed to find a match in the TLB. R Undefined

0 30:4 Must be written as zero; returns zero on read. 0 0

Index 3:0 Index to the TLB entry affected by the TLBRead and
TLBWrite instructions. R/W Undefined
74 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

5.2 CP0 Registers

The

ontents

d that
5.2.2 Random Register (CP0 Register 1, Select 0)

TheRandom register is a read-only register whose value is used to index the TLB during a TLBWR instruction.
width of the Random field is calculated in the same manner as that described for theIndex register above.

The value of the register varies between an upper and lower bound as follow:

• A lower bound is set by the number of TLB entries reserved for exclusive use by the operating system (the c
of theWiredregister). The entry indexed by theWiredregister is the first entry available to be written by a TLB Write
Random operation.

• An upper bound is set by the total number of TLB entries minus 1.

TheRandomregister is decremented by one almost every clock wrapping after the value in theWiredregister is reached.
To enhance the level of randomness and reduce the possibility of a live lock condition, an LFSR register is use
prevents the decrement pseudo-randomly.

The processor initializes theRandom register to the upper bound on a Reset exception and when theWired register is
written.

This register is only valid with the TLB (4Kc core). It is reserved if the FM is implemented (4Km and 4Kp).

Random Register Format
31 4 3 0

0 Random

Table 5-4Random Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

0 31:4 Must be written as zero; returns zero on read. 0 0

Random 3:0 TLB Random Index R TLB Entries - 1
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 75

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 5 CP0 Registers

ns.

ed,

4Kp).
5.2.3 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)

The pair ofEntryLo registers act as the interface between the TLB and the TLBR, TLBWI, and TLBWR instructio
For a TLB-based MMU,EntryLo0 holds the entries for even pages andEntryLo1 holds the entries for odd pages.

The contents of theEntryLo0 andEntryLo1 registers are undefined after an address error, TLB invalid, TLB modifi
or TLB refill exceptions.

These registers are only valid with the TLB (4Kc core). They are reserved if the FM is implemented (4Km and

EntryLo0 , EntryLo1 Register Format

Table 5-6lists the encoding of the C field of theEntryLo0andEntryLo1registers and the K0 field of theConfigregister.

31 30 29 26 25 6 5 3 2 1 0

R 0 PFN C D V G

Table 5-5EntryLo0, EntryLo1 Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

R 31:30 Reserved. Should be ignored on writes; returns zero on read. R 0

0 29:26

These 4 bits are normally part of the PFN. However, since the
core supports only 32-bits of physical address, the PFN is only
20-bits wide. Therefore, bits 29:26 of this register must be
written with zeros.

R/W 0

PFN 25:6 Page Frame Number. Corresponds to bits 31:12 of the
physical address. R/W Undefined

C 5:3 Coherency attribute of the page. SeeTable 5-6. R/W Undefined

D 2

“Dirty” or write-enable bit, indicating that the page has been
written, and/or is writable. If this bit is a one, stores to the page
are permitted. If this bit is a zero, stores to the page cause a
TLB Modified exception.

R/W Undefined

V 1

Valid bit, indicating that the TLB entry, and thus the virtual
page mapping are valid. If this bit is a one, accesses to the page
are permitted. If this bit is a zero, accesses to the page cause a
TLB Invalid exception.

R/W Undefined

G 0

Global bit. On a TLB write, the logical AND of the G bits in
both the EntryLo0 and EntryLo1 registers become the G bit in
the TLB entry. If the TLB entry G bit is a one, ASID
comparisons are ignored during TLB matches. On a read from
a TLB entry, the G bits of both EntryLo0 and EntryLo1 reflect
the state of the TLB G bit.

R/W Undefined

Table 5-6 Cache Coherency Attributes

C(5:3) Value Cache Coherency Attribute

0, 1, 3*, 4, 5, 6 Cacheable, noncoherent, write through, no write allocate

2*, 7 Uncached
76 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

5.2 CP0 Registers
Note: * These two values are required by the MIPS32 architecture. All other values are not used. For example, values 0, 1, 4, 5 and
6 are not used and are mapped to 3. The value 7 is not used and is mapped to 2. Note that these values do have meaning in other
MIPS Technologies processor implementations. Refer to the MIPS32 specification for more information.

Table 5-6 Cache Coherency Attributes

C(5:3) Value Cache Coherency Attribute
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 77

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 5 CP0 Registers

 This
erating

tly
5.2.4 Context Register (CP0 Register 4, Select 0)

TheContext register is a read/write register containing a pointer to an entry in the page table entry (PTE) array.
array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the op
system loads the TLB with the missing translation from the PTE array. TheContext register duplicates some of the
information provided in theBadVAddr register but is organized in such a way that the operating system can direc
reference an 8-byte page table entry (PTE) in memory.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA31:13 of the virtual address to be written
into the BadVPN2 field of theContext register. The PTEBase field is written and used by the operating system.

The BadVPN2 field of theContext register is not defined after an address error exception.

This register is only valid with the TLB (4Kc core). It is reserved if the FM is implemented (4Km and 4Kp).

Context Register Format
31 23 22 4 3 0

PTEBase BadVPN2 0

Table 5-7Context Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

PTEBase 31:23

This field is for use by the operating system and is
normally written with a value that allows the operating
system to use theContext Register as a pointer into the
current PTE array in memory.

R/W Undefined

BadVPN2 22:4
This field is written by hardware on a TLB miss for the
4Kc core. It contains bits VA31:13 of the virtual address
that missed.

R Undefined

0 3:0 Must be written as zero; returns zero on read. 0 0
78 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

5.2 CP0 Registers

ask
5.2.5 PageMask Register (CP0 Register 5, Select 0)

ThePageMaskregister is a read/write register used for reading from and writing to the TLB. It holds a comparison m
that sets the variable page size for each TLB entry as shown inTable 5-9. Behavior isUNDEFINED if a value other
than those listed is used.

This register is only valid with the TLB (4Kc core). It is reserved if the FM is implemented (4Km and 4Kp).

PageMask Register Format
31 25 24 13 12 0

0 Mask 0

Table 5-8PageMask Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

Mask 24:13
The Mask field is a bit mask in which a “1” indicates that
the corresponding bit of the virtual address should not
participate in the TLB match.

R/W Undefined

0 31:25,
12:0 Must be written as zero; returns zero on read. 0 0

Table 5-9 Values for the Mask Field of thePageMask Register

Page Size Bit

24 23 22 21 20 19 18 17 16 15 14 13

4 KBytes 0 0 0 0 0 0 0 0 0 0 0 0

16 KBytes 0 0 0 0 0 0 0 0 0 0 1 1

64 KBytes 0 0 0 0 0 0 0 0 1 1 1 1

256 KBytes 0 0 0 0 0 0 1 1 1 1 1 1

1 MByte 0 0 0 0 1 1 1 1 1 1 1 1

4 MByte 0 0 1 1 1 1 1 1 1 1 1 1

16 Mbyte 1 1 1 1 1 1 1 1 1 1 1 1
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 79

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 5 CP0 Registers

e TLB

Wired

to the
5.2.6 Wired Register (CP0 Register 6, Select 0)

TheWiredregister is a read/write register that specifies the boundary between the wired and random entries in th
as shown inFigure 5-1. The width of the Wired field is calculated in the same manner as that described for theIndex
register above. Wired entries are fixed, non-replaceable entries that are not overwritten by a TLBWR instruction.
entries can be overwritten by a TLBWI instruction.

TheWiredregister is set to zero by a Reset exception. Writing theWiredregister causes theRandomregister to reset to
its upper bound.

The operation of the processor is undefined if a value greater than or equal to the number of TLB entries is written
Wired register.

This register is only valid with a TLB (4Kc core). It is reserved if the FM is implemented (4Km and 4Kp cores).

Figure 5-1 Wired and Random Entries in the TLB

Wired Register Format
31 4 3 0

0 Wired

Table 5-10 Wired Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

0 31:4 Must be written as zero; returns zero on read. 0 0

Wired 3:0 TLB wired boundary. R/W 0

Entry 0

Entry 10

Entry n-1

10Wired Register

W
ire

d
R

an
do

m

80 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

5.2 CP0 Registers

he

g error.
5.2.7 BadVAddr Register (CP0 Register 8, Select 0)

TheBadVAddr register is a read-only register that captures the most recent virtual address that caused one of t
following exceptions:

• Address error (AdEL or AdES)

• TLB Refill (4Kc core)

• TLB Invalid (4Kc core)

• TLB Modified (4Kc core)

TheBadVAddrregister does not capture address information for cache or bus errors, since neither is an addressin

BadVAddr Register Format
31 0

BadVAddr

Table 5-11BadVAddr Register Field Description

Fields Description Read/
Write

Reset State

Name Bits

BadVAddr 31:0 Bad virtual address R Undefined
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 81

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 5 CP0 Registers

ired, or

ssors.

ntDM
5.2.8 Count Register (CP0 Register 9, Select 0)

TheCountregister acts as a timer, incrementing at a constant rate, whether or not an instruction is executed, ret
any forward progress is made through the pipeline. The counter increments every other clock.

TheCountregister can be written for functional or diagnostic purposes, including at reset or to synchronize proce

Whether theCountregister continues incrementing while the processor is in debug mode is determined by the Cou
bit in theDebug register (seeSection 5.2.20, "Debug Register (CP0 Register 23)" on page 100).

Count Register Format
31 0

Count

Table 5-12Count Register Field Description

Fields Description Read/
Write

Reset State

Name Bits

Count 31:0 Interval counter. R/W Undefined
82 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

5.2 CP0 Registers

tions.

).
5.2.9 EntryHi Register (CP0 Register 10, Select 0)

TheEntryHi register contains the virtual address match information used for TLB read, write, and access opera

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA31:13 of the virtual address to be written
into the VPN2 field of theEntryHi register. The ASID field is written by software with the current address space
identifier value and is used during the TLB comparison process to determine TLB match.

The VPN2 field of theEntryHi register is not defined after an address error exception.

This register is only valid with the TLB (4Kc core). It is reserved if the FM is implemented (4Km and 4Kp cores

EntryHi Register Format
31 13 12 8 7 0

VPN2 0 ASID

Table 5-13EntryHi Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

VPN2 31:13

VA31:13of the virtual address (virtual page number / 2).
This field is written by hardware on a TLB exception or
on a TLB read, and is written by software before a TLB
write.

R/W Undefined

0 12:8 Must be written as zero; returns zero on read. 0 0

ASID 7:0

Address space identifier. This field is written by
hardware on a TLB read and by software to establish
the current ASID value for TLB write and against
which TLB references match each entry’s TLB ASID
field.

R/W Undefined
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 83

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 5 CP0 Registers

e
wn.

of
rupt 5
5.2.10 Compare Register (CP0 Register 11, Select 0)

TheCompareregister acts in conjunction with theCountregister to implement a timer and timer interrupt function. Th
timer interrupt is an output of the cores. TheCompareregister maintains a stable value and does not change on its o

When the value of theCountregister equals the value of theCompareregister, the SI_TimerInt pin is asserted. This pin
will remain asserted until theCompareregister is written. The SI_TimerInt pin can be fed back into the core on one
the interrupt pins to generate an interrupt. Traditionally, this has been done by multiplexing it with hardware inter
to set interrupt bit IP(7) in theCause register.

For diagnostic purposes, theCompare register is a read/write register. In normal use, however, theCompare register is
write-only. Writing a value to theCompare register, as a side effect, clears the timer interrupt.

Compare Register Format
31 0

Compare

Table 5-14Compare Register Field Description

Fields Description Read/
Write

Reset State

Name Bit(s)

Compare 31:0 Interval count compare value R/W Undefined
84 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

5.2 CP0 Registers

nostic
:

sor is

ble,
5.2.11 Status Register (CP0 Register 12, Select 0)

TheStatusregister (SR) is a read/write register that contains the operating mode, interrupt enabling, and the diag
states of the processor. Fields of this register combine to create operating modes for the processor, as follows

Interrupt Enable : Interrupts are enabled when all of the following conditions are true:

• IE = 1

• EXL = 0

• ERL = 0

• DM = 0

If these conditions are met, the settings of the IM and IE bits enable the interrupt.

Operating Modes: If the DM bit in the Debug register is 1, the processor is in debug mode. Otherwise the proces
in either kernel or user mode. The following CPU Status register bit settings determine user or kernel mode.

• User mode: UM = 1, EXL = 0, and ERL = 0

• Kernel mode: UM = 0, or EXL = 1, or ERL = 1

Coprocessor Accessibility:TheStatusregister CU bits control coprocessor accessibility. If any coprocessor is unusa
an instruction that accesses it generates an exception.

Coprocessor 0 is always enabled in kernel mode, regardless of the setting of the CU0 bit.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 85

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 5 CP0 Registers
Status Register Format
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 8 7 5 4 3 2 1 0

CU3-CU0 RP R RE 0 BEV TS SR NMI 0 0 IM7-IM0 R UM R ERL EXL IE

Table 5-15Status Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

CU3-CU0 31:28

Controls access to coprocessors 3, 2, 1, and 0,
respectively:

0: access not allowed
1: access allowed

Coprocessor 0 is always usable when the processor is
running in kernel mode, independent of the state of the
CU0 bit.

The core does not support coprocessors 1-3, but CU3:1
can still be set. However, processor behavior is
unpredictable if a coprocessor instruction to
coprocessors 1-3 is attempted with the corresponding
CU3:1 bit set.

R/W Undefined

RP 27 Enables reduced power mode. The state of the RP bit is
available on the bus interface as the SI_RP signal. R/W 0 for Cold

Reset only.

R 26 This bit must be ignored on writes and read as zero. R 0

RE 25

Used to enable reverse-endian memory references
while the processor is running in user mode:

0: User mode uses configured endianness
1: User mode uses reversed endianness

Kernel or debug mode references are not affected by
the state of this bit.

R/W Undefined

0 24:23 This bit must be written as zero; returns zero on read. R 0

BEV 22

Controls the location of exception vectors:

0: Normal
1: Bootstrap

R/W 1

TS 21

TLB shutdown. This bit is set if a TLBWI or TLBWR
instruction is issued that would cause a TLB shutdown
condition if allowed to complete. This bit is only used
in the 4Kc processor and is reserved in the 4Kp and
4Km processors.

Software can only write a 0 to this bit to clear it and
cannot force a 0-1 transition.

R/W 0

SR 20

Indicates that the entry through the reset exception
vector was due to a Soft Reset:

0: Not Soft Reset (NMI or hard reset)
1: Soft Reset

Software can only write a 0 to this bit to clear it and
cannot force a 0-1 transition.

R/W
1 for Soft
Reset; 0

otherwise
86 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

5.2 CP0 Registers
NMI 19

Indicates that the entry through the reset exception
vector was due to an NMI.

0: Not NMI (soft or hard reset)
1: NMI

Software can only write a 0 to this bit to clear it and
cannot force a 0-1 transition.

R/W 1 for NMI; 0
otherwise

0 18 Must be written as zero; returns zero on read. R 0

R 17:16 Reserved. Must be ignored on write and read as zero. R 0

IM[7:0] 15:8

Interrupt Mask: Controls the enabling of each of the
external, internal, and software interrupts. An interrupt
is taken if interrupts are enabled and the corresponding
bits are set in both the Interrupt Mask field of the Status
register and the Interrupt Pending field of the Cause
register and the IE bit is set in the Status register.

0: Interrupt request disabled
1: Interrupt request enabled

R/W Undefined

R 7:5 Reserved. Must be ignored on write and read as zero. R 0

UM 4

Indicates that the processor is operating in user mode:

0: processor is operating in kernel mode
1: processor is operating in user mode

Note that the processor can also be in kernel mode if
EXR or ERL are set. This condition does not affect the
state of the UM bit.

R/W Undefined

R 3 Reserved. Must be ignored on write and read as zero. R 0

ERL 2

Error Level. Set by the processor when a Reset, Soft
Reset, or NMI exception is taken.

0: normal level
1: error level

When ERL is set:

The processor is running in kernel mode.

Interrupts are disabled.

The ERET instruction uses the return address held in
ErrorEPC instead of EPC.

kuseg is treated as an unmapped and uncached region.
This allows main memory to be accessed in the
presence of cache errors. Behavior isUNDEFINED if
ERL is set while executing code in useg/kuseg.

R/W 1

Table 5-15Status Register Field Descriptions (Continued)

Fields Description Read/
Write

Reset State

Name Bit(s)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 87

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 5 CP0 Registers
EXL 1

Exception Level. Set by the processor when any
exception other than a Reset, Soft Reset, or NMI
exception is taken.

0: normal level
1: exception level

When EXL is set:

The processor is running in kernel mode.

Interrupts are disabled.

In the 4Kc core, TLB refill exceptions use the general
exception vector instead of the TLB refill vector.

EPC is not updated if another exception is taken.

R/W Undefined

IE 0

Interrupt Enable. Acts as the master enable for software
and hardware interrupts:

0: disables interrupts
1: enables interrupts

R/W Undefined

Table 5-15Status Register Field Descriptions (Continued)

Fields Description Read/
Write

Reset State

Name Bit(s)
88 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

5.2 CP0 Registers

ftware
d WP
5.2.12 Cause Register (CP0 Register 13, Select 0)

TheCause register primarily describes the cause of the most recent exception. In addition, fields also control so
interrupt requests and the vector through which interrupts are dispatched. With the exception of the IP[1:0], IV, an
fields, all fields in the Cause register are read-only.

Cause Register Format
31 30 29 28 27 24 23 22 21 16 15 10 9 8 7 6 5 4 3 2 1 0

BD 0 CE 0 IV WP 0 IP[7:2] IP[1:0] 0 Exc Code 0

Table 5-16Cause Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

BD 31

Indicates whether the last exception taken occurred in a branch
delay slot:

0: Not in delay slot
1: In delay slot

Note that the BD bit is not updated on a new exception if the
EXL bit is set.

R Undefined

CE 29:28

Coprocessor unit number referenced when a Coprocessor
Unusable exception is taken. This field is loaded by hardware
on every exception but is unpredictable for all exceptions
except for Coprocessor Unusable.

R Undefined

IV 23

Indicates whether an interrupt exception uses the general
exception vector or a special interrupt vector:

0: Use the general exception vector (0x180)
1: Use the special interrupt vector (0x200)

R/W Undefined

WP 22

Indicates that a watch exception was deferred because
StatusEXL or StatusERL were a one at the time the watch
exception was detected. This bit both indicates that the watch
exception was deferred and causes the exception to be initiated
onceStatusEXL andStatusERL are both zero. As such, software
must clear this bit as part of the watch exception handler to
prevent a watch exception loop.

Software can only write a 0 to this bit to clear it and cannot
force a 0-1 transition.

R/W Undefined

IP[7:2] 15:10

Indicates an external interrupt is pending:

15: Hardware interrupt 5 or timer interrupt
14: Hardware interrupt 4
13: Hardware interrupt 3
12: Hardware interrupt 2
11: Hardware interrupt 1
10: Hardware interrupt 0

R Undefined

IP[1:0] 9:8

Controls the request for software interrupts:

9: Request software interrupt 1
8: Request software interrupt 0

R/W Undefined

Exc Code 6:2 Exception code — seeTable 5-17. R Undefined
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 89

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 5 CP0 Registers
0

30,
27:24,

21:16, 7,
1:0

Must be written as zero; returns zero on read. R 0

Table 5-17 Cause Register ExcCode Field Descriptions

Exception
Code Value

Mnemonic Description

0 Int Interrupt

1 Mod TLB modification exception (4Kc core) or Reserved (4Km and 4Kp cores)

2 TLBL TLB exception (load or instruction fetch) (4Kc core) or Reserved (4Km and 4Kp cores)

3 TLBS TLB exception (store) (4Kc core) or Reserved (4Km and 4Kp cores)

4 AdEL Address error exception (load or instruction fetch)

5 AdES Address error exception (store)

6 IBE Bus error exception (instruction fetch)

7 DBE Bus error exception (data reference: load or store)

8 Sys Syscall exception

9 Bp Breakpoint exception

10 RI Reserved instruction exception

11 CpU Coprocessor Unusable exception

12 Ov Integer Overflow exception

13 Tr Trap exception

14-22 - Reserved

23 WATCH Reference to WatchHi/WatchLo address

24 MCheck Machine check (4Kc core) or Reserved (4Km and 4Kp cores)

25-31 - Reserved

Table 5-16Cause Register Field Descriptions (Continued)

Fields Description Read/
Write

Reset State

Name Bit(s)
90 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

5.2 CP0 Registers

mes

uction
5.2.13 Exception Program Counter (CP0 Register 14, Select 0)

The Exception Program Counter (EPC) is a read/write register that contains the address at which processing resu
after an exception has been serviced. All bits of theEPC register are significant and must be writable.

For synchronous (precise) exceptions, theEPC contains one of the following:

• The virtual address of the instruction that was the direct cause of the exception

• The virtual address of the immediately preceding branch or jump instruction, when the exception causing instr
is in a branch delay slot and theBranch Delay bit in theCause register is set.

On new exceptions, the processor does not write to theEPC register when the EXL bit in theStatus register is set.
However, the register can still be written via the MTC0 instruction.

EPC Register Format
31 0

EPC

Table 5-18EPC Register Field Description

Fields Description Read/
Write

Reset State

Name Bit(s)

EPC 31:0 Exception Program Counter. R/W Undefined
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 91

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 5 CP0 Registers
5.2.14 Processor Identification (CP0 Register 15, Select 0)

The Processor Identification (PRId) register is a 32-bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification, and revision level of the processor.

PRId Register Format
31 24 23 16 15 8 7 0

R Company ID Processor ID Revision

Table 5-19PRId Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

R 31:24 Reserved. Must be ignored on write and read as zero R 0

Company
ID 23:16

Identifies the company that designed or manufactured the
processor. In all three cores this field contains a value of
1 to indicate MIPS Technologies, Inc.

R 1

Processor
ID 15:8

Identifies the type of processor. This field allows software
to distinguish between the various types of MIPS
Technologies processors. This field contains a value of
0x80 for the 4Kc processor. The value is 0x83 for the 4Kp
and 4Km processors.

R

4Kc
core - 0x80

4Km & 4Kp
cores - 0x83

Revision 7:0

Specifies the revision number of the processor. This field
allows software to distinguish between one revision and
another of the same processor type. Current values:

0x1: 1.1-2.2
0x2: 2.3-2.4
0x3: 2.5-2.6
0x4: 3.0
0x5: 3.1
0x6: 3.2
0x7: 3.3
0x8: 3.4
0x9: 3.5

R Preset
92 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

5.2 CP0 Registers

ed by
5.2.15 Config Register (CP0 Register 16, Select 0)

TheConfigregister specifies various configuration and capabilities information. Most of the fields in theConfigregister
are initialized by hardware during the Reset exception process, or are constant. One field, K0, must be initializ
software in the Reset exception handler.

Config Register Format — Select 0
31 30 28 27 25 24 21 20 19 18 17 16 15 14 13 12 10 9 7 6 3 2 0

M K23 KU R MDU R MM BM BE AT AR MT 0 K0

Table 5-20Config Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

M 31 This bit is hardwired to ‘1’ to indicate the presence of the
Config1 register. R 1

K23 30:28

This field controls the cacheability of the kseg2 and kseg3
address segments in FM implementations. This field is
valid in the 4Kp and 4Km processor and is reserved in the
4Kc processor (must be written as 0; returns 0 on read).

Refer toTable 5-21 for the field encoding.

FM: R/W

TLB: 0

FM: 010

TLB: 000

KU 27:25

This field controls the cacheability of the kuseg and useg
address segments in FM implementations. This field is
valid in the 4Kp and 4Km processor and is reserved in the
4Kc processor (must be written as 0; returns 0 on read).

Refer toTable 5-21 for the field encoding.

FM: R/W

TLB: 0

FM: 010

TLB: 000

0 24:21 Must be written as 0. Returns 0 on read. 0 0

MDU 20

This bit indicates the MDU type.

0 = Fast Multiplier Array (4Kc and 4Km cores)
1 = Iterative multiplier (4Kp cores)

R Preset

0 19 Must be written as 0. Returns 0 on read. 0 0

MM 18:17

This field contains the merge mode for the 32-byte
collapsing write buffer:

00 = No Merging
01 = SysAD Valid merging
10 = Full merging
11 = Reserved

R Externally Set

BM 16

Burst order.

0: Sequential
1: SubBlock

R Externally Set

BE 15

Indicates the endian mode in which the processor is
running:

0: Little endian
1: Big endian

R Externally Set

AT 14:13 Architecture type implemented by the processor. This field
is always 00 to indicate MIPS32. R 00
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 93

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 5 CP0 Registers
AR 12:10

Architecture revision level. This field is always 000 to
indicate revision 1.

0: Revision 1
1-7: Reserved

R 000

MT 9:7

MMU Type:

1: Standard TLB (4Kc core)
3: Fixed Mapping (4Kp, 4Km cores)
All other values: Reserved

R Preset

0 6:3 Must be written as zero; returns zero on read. 0 0

K0 2:0 Kseg0 coherency algorithm. Refer toTable 5-21 for the
field encoding. R/W 010

Table 5-21 Cache Coherency Attributes

C(2:0) Value Cache Coherency Attribute

0, 1, 3*, 4, 5, 6 Cacheable, noncoherent, write-through, no write allocate

2*, 7 Uncached

Note: * These two values are required by the MIPS32 architecture. In the 4K processor cores, all other values are not used. For ex-
ample, values 0, 1, 4, 5 and 6 are not used and are mapped to 3. The value 7 is not used and is mapped to 2. Note that these
values do have meaning in other MIPS Technologies processor implementations. Refer to the MIPS32 specification for more
information.

Table 5-20Config Register Field Descriptions (Continued)

Fields Description Read/
Write

Reset State

Name Bit(s)
94 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

5.2 CP0 Registers

e

ine size,
5.2.16 Config1 Register (CP0 Register 16, Select 1)

TheConfig1register is an adjunct to theConfigregister and encodes additional capabilities information. All fields in th
Config1 register are read-only.

The instruction and data cache configuration parameters include encodings for the number of sets per way, the l
and the associativity. The total cache size for a cache is therefore:

Associativity * Line Size * Sets Per Way

If the line size is zero, there is no cache implemented.

Config1 Register Format — Select 1
31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 1 0

0 MMU Size IS IL IA DS DL DA 0 PC WR CA EP FP

Table 5-22Config1 Register Field Descriptions — Select 1

Fields Description Read/
Write

Reset State

Name Bit(s)

0 31 This bit is reserved to and must be read or written as zero. R 0

MMU Size 30:25
This field contains the number of entries in the TLB minus
one. The field is read as 15 decimal in the 4Kc processor
and as 0 decimal in the 4Kp and 4Km processors.

R Preset

IS 24:22

This field contains the number of instruction cache sets per
way. Three options are available. All others values are
reserved:

0x0: 64
0x1: 128
0x2: 256
0x3 - 0x7: Reserved

R Preset

IL 21:19

This field contains the instruction cache line size. If an
instruction cache is present, it must contain a fixed line size
of 16 bytes.

0x0: No Icache present
0x3: 16 bytes
0x1, 0x2, 0x4 - 0x7: Reserved

R Preset

IA 18:16

This field contains the level of instruction cache
associativity.

0x0: Direct mapped
0x1: 2-way
0x2: 3-way
0x3: 4-way
0x4 - 0x7: Reserved

R Preset

DS 15:13

This field contains the number of data cache sets per way:

0x0: 64
0x1: 128
0x2: 256
0x3 - 0x7: Reserved

R Preset
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 95

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 5 CP0 Registers
DL 12:10

This field contains the data cache line size. If a data cache
is present, it must contain a line size of 16 bytes.

0x0: No Dcache present
0x3: 16 bytes
0x1, 0x2, 0x4 - 0x7: Reserved

R Preset

DA 9:7

This field contains the type of set associativity for the data
cache:

0x0: Direct mapped
0x1: 2-way
0x2: 3-way
0x3: 4-way
0x4 - 0x7: Reserved

R Preset

0 6:5 Must be written as zero; returns zero on read. 0 0

PC 4 Performance Counter registers implemented. Always a 0
since the cores do not implement any. R 0

WR 3 Watch registers implemented. This bit always reads as 1
since the cores each contain one pair of Watch registers. R 1

CA 2 Code compression (MIPS16™) implemented. This bit
always reads as 0 because MIPS16 is not supported. R 0

EP 1 EJTAG present: This bit is always set to indicate that the
core implements EJTAG. R 1

FP 0 FPU implemented. This bit is always zero since the core
does not contain a floating-point unit. R 0

Table 5-22Config1 Register Field Descriptions — Select 1 (Continued)

Fields Description Read/
Write

Reset State

Name Bit(s)
96 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

5.2 CP0 Registers

gister
5.2.17 Load Linked Address (CP0 Register 17, Select 0)

TheLLAddr register contains the physical address read by the most recent Load Linked (LL) instruction. This re
is for diagnostic purposes only, and serves no function during normal operation.

LLAddr Register Format
31 28 27 0

0 PAddr[31:4]

Table 5-23LLAddr Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

0 31:28 Must be written as zero; returns zero on read. 0 0

PAddr[31:4] 27:0 This field encodes the physical address read by the most
recent Load Linked instruction. R Undefined
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 97

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 5 CP0 Registers

atch
te some

e

match.
5.2.18 WatchLo Register (CP0 Register 18)

TheWatchLo andWatchHi registers together provide the interface to a watchpoint debug facility that initiates a w
exception if an instruction or data access matches the address specified in the registers. As such, they duplica
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zero in theStatus
register. If either bit is a one, the WP bit is set in theCause register, and the watch exception is deferred until both th
EXL and ERL bits are zero.

TheWatchLoregister specifies the base virtual address and the type of reference (instruction fetch, load, store) to

WatchLo Register Format
31 3 2 1 0

VAddr I R W

Table 5-24WatchLo Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bits

VAddr 31:3
This field specifies the virtual address to match. Note that
this is a doubleword address, since bits [2:0] are used to
control the type of match.

R/W Undefined

I 2 If this bit is set, watch exceptions are enabled for
instruction fetches that match the address. R/W 0 for Cold

Reset only.

R 1 If this bit is set, watch exceptions are enabled for loads that
match the address. R/W 0 for Cold

Reset only.

W 0 If this bit is set, watch exceptions are enabled for stores that
match the address. R/W 0 for Cold

Reset only.
98 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

5.2 CP0 Registers

atch
te some

e

pecified
value
ld
5.2.19 WatchHi Register (CP0 Register 19)

TheWatchLo andWatchHi registers together provide the interface to a watchpoint debug facility that initiates a w
exception if an instruction or data access matches the address specified in the registers. As such, they duplica
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zero in theStatus
register. If either bit is a one, the WP bit is set in theCause register, and the watch exception is deferred until both th
EXL and ERL bits are zero.

TheWatchHiregister contains information that qualifies the virtual address specified in theWatchLoregister: an ASID,
a Global (G) bit, and an optional address mask. If the G bit is 1, any virtual address reference that matches the s
address will cause a watch exception. If the G bit is a 0, only those virtual address references for which the ASID
in theWatchHiregister matches the ASID value in theEntryHi register cause a watch exception. The optional mask fie
provides address masking to qualify the address specified inWatchLo.

WatchHi Register Format
31 30 29 24 23 16 15 12 11 3 2 0

0 G 0 ASID 0 MASK 0

Table 5-25WatchHi Register Field Descriptions

Fields Description Read/Write Reset State

Name Bit(s)

0 31 Must be written as zero; returns zero on read. 0 0

G 30

4Kc core: If this bit is one, any address that matches that
specified in theWatchLo register causes a watch exception. If
this bit is zero, the ASID field of theWatchHi register must
match the ASID field of theEntryHi register to cause a watch
exception.

4Km/4Kp cores: Must be written as zero; returns zero on read.

4Kc core: R/W

4Km/4Kp cores: 0
Undefined

0 29:24 Must be written as zero; returns zero on read. 0 0

ASID 23:16

4Kc core: ASID value which is required to match that in the
EntryHi register if the G bit is zero in theWatchHi register.

4Km/4Kp cores: Must be written as zero; returns zero on read.

4Kc core: R/W

4Km/4Kp cores: 0
Undefined

0 15:12 Must be written as zero; returns zero on read. 0 0

Mask 11:3
Bit mask that qualifies the address in theWatchLoregister. Any
bit in this field that is a set inhibits the corresponding address
bit from participating in the address match.

R/W Undefined

0 2:0 Must be written as zero; returns zero on read. 0 0
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 99

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 5 CP0 Registers

g
ad-only
already

fields

 below:

des

 e.g.
5.2.20 Debug Register (CP0 Register 23)

TheDebug register is used to control the debug exception and provide information about the cause of the debu
exception and when re-entering at the debug exception vector due to a normal exception in debug mode. The re
information bits are updated every time the debug exception is taken or when a normal exception is taken when
in debug mode.

Only the DM bit and the EJTAGver field are valid when read from non-debug mode; the value of all other bits and
is UNPREDICTABLE. Operation of the processor is UNDEFINED if theDebug register is written from non-debug
mode.

Some of the bits and fields are only updated on debug exceptions and/or exceptions in debug mode, as shown

• DSS, DBp, DDBL, DDBS, DIB, DINT are updated on both debug exceptions and on exceptions in debug mo

• DExcCode is updated on exceptions in debug mode, and is undefined after a debug exception

• Halt and Doze are updated on a debug exception, and is undefined after an exception in debug mode

• DBD is updated on both debug and on exceptions in debug modes

All bits and fields are undefined when read from normal mode, except those explicitly described to be defined,
EJTAGver and DM.

Debug Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18

DBD DM R LSNM Doze Halt CountDM IBusEP R DBusEP IEXI R

17 15 14 10 9 8 7 6 5 4 3 2 1 0

Ver DExcCode R SSt R DINT DIB DDBS DDBL DBp DSS

Table 5-26Debug Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

DBD 31

Indicates whether the last debug exception or exception
in debug mode, occurred in a branch delay slot:

0: Not in delay slot
1: In delay slot

R Undefined

DM 30

Indicates that the processor is operating in debug mode:

0: Processor is operating in non-debug mode
1: Processor is operating in debug mode

R 0

R 29 Reserved. Must be written as zero; returns zero on read. R 0

LSNM 28

Controls access of load/store between dseg and main
memory:

0: Load/stores in dseg address range goes to dseg.
1: Load/stores in dseg address range goes to main
memory.

R/W 0
100 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

5.2 CP0 Registers
Doze 27

Indicates that the processor was in any kind of low
power mode when a debug exception occurred:

0: Processor not in low power mode when debug
exception occurred
1: Processor in low power mode when debug exception
occurred

R Undefined

Halt 26

Indicates that the internal system bus clock was stopped
when the debug exception occurred:

0: Internal system bus clock stopped
1: Internal system bus clock running

R Undefined

CountDM 25

Indicates the Count register behavior in debug mode.

Encoding of the bit is:

0: Count register stopped in debug mode
1: Count register increments in debug mode

R/W 1

IBusEP 24

Instruction fetch Bus Error exception Pending. Set
when an instruction fetch bus error event occurs or if a
1 is written to the bit by software.Cleared when a Bus
Error exception on instruction fetch is taken by the
processor, and by reset. If IBusEP is set when IEXI is
cleared, a Bus Error exception on instruction fetch is
taken by the processor, and IBusEP is cleared.

R/W1 0

R 23:22 Reserved. Must be written as zero; returns zero on read. R 0

DBusEP 21

Data access Bus Error exception Pending.Covers
imprecise bus errors on data access, similar to behavior
of IBusEP for imprecise bus errors on an instruction
fetch.

R/W1 0

IEXI 20

Imprecise Error eXception Inhibit controls exceptions
taken due to imprecise error indications. Set when the
processor takes a debug exception or exception in
debug mode. Cleared by execution of the DERET
instruction. Otherwise modifiable by debug mode
software. When IEXI is set then the imprecise error
exceptions from bus error on instruction fetch or data
access, cache error or machine check are inhibited and
deferred until the bit is cleared.

R/W 0

R 19:18 Reserved. Must be written as zero; returns zero on read. R 0

Ver 17:15 EJTAG version R 1

DExcCode 14:10

Indicates the cause of the latest exception in debug
mode. The field is encoded as the ExcCode field in the
Cause register for those normal exceptions that may
occur in debug mode.

Value is undefined after a debug exception.

R Undefined

R 9 Reserved. Must be written as zero; returns zero on read. R 0

SSt 8

Controls if debug single step exception is enabled:

0: No debug single step exception enabled
1: Debug single step exception enabled

R/W 0

R 7:6 Reserved. Must be written as zero; returns zero on read. R 0

Table 5-26Debug Register Field Descriptions (Continued)

Fields Description Read/
Write

Reset State

Name Bit(s)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 101

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 5 CP0 Registers
DINT 5

Indicates that a debug interrupt exception occurred.
Cleared on exception in debug mode.

0: No debug interrupt exception
1: Debug interrupt exception

R/W Undefined

DIB 4

Indicates that a debug instruction break exception
occurred. Cleared on exception in debug mode.

0: No debug instruction exception
1: Debug instruction exception

R Undefined

DDBS 3

Indicates that a debug data break exception occurred on
a store. Cleared on exception in debug mode.

0: No debug data exception on a store
1: Debug instruction exception on a store

R Undefined

DDBL 2

Indicates that a debug data break exception occurred on
a load. Cleared on exception in debug mode.

0: No debug data exception on a load
1: Debug instruction exception on a load

R Undefined

DBp 1

Indicates that a debug software breakpoint exception
occurred. Cleared on exception in debug mode.

0: No debug software breakpoint exception
1: Debug software breakpoint exception

R Undefined

DSS 0

Indicates that a debug single step exception occurred.
Cleared on exception in debug mode.

0: No debug single step exception
1: Debug single step exception

R Undefined

Table 5-26Debug Register Field Descriptions (Continued)

Fields Description Read/
Write

Reset State

Name Bit(s)
102 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

5.2 CP0 Registers

ing

e

5.2.21 Debug Exception Program Counter Register (CP0 Register 24)

The Debug Exception Program Counter (DEPC) register is a read/write register that contains the address at which
processing resumes after a debug exception or debug mode exception has been serviced.

For synchronous (precise) debug and debug mode exceptions, theDEPC contains either:

• The virtual address of the instruction that was the direct cause of the debug exception, or

• The virtual address of the immediately preceding branch or jump instruction, when the debug exception caus
instruction is in a branch delay slot, and the Debug Branch Delay (BDB) bit in theDebug register is set.

For asynchronous debug exceptions (debug interrupt), theDEPC contains the virtual address of the instruction wher
execution should resume after the debug handler code is executed.

DEPC Register Format
31 0

DEPC

Table 5-27DEPC Register Formats

Fields Description Read/
Write

Reset

Name Bit(s)

DEPC 31:0

TheDEPC register is updated with the virtual address of
the instruction that caused the debug exception. If the
instruction is in the branch delay slot, the virtual address
of the immediately preceding branch or jump instruction
is placed in this register.

Execution of the DERET instruction causes a jump to the
address in theDEPC.

 R/W Undefined
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 103

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 5 CP0 Registers

r both

RAM
used

on is
icated

, Index
ffects

s of the
not
5.2.22 ErrCtl Register (CP0 Register 26, Select 0)

The ErrCtl register provides a mechanism for enabling software testing of the way-select and data RAM arrays fo
the ICache and DCache. The way-selection RAM test mode is enabled by setting the WST bit. It modifies the
functionality of the CACHE Index Load Tag and Index Store Tag operations so that they modify the way-selection
and leave the Tag RAMs untouched. When this bit is set, the lower 6 bits of the PA field in the TagLo register are
as the source and destination for Index Load Tag and Index Store Tag CACHE operations.

The WST bit also enables the data RAM test mode. When this bit is set, the Index Store Data CACHE instructi
enabled. This CACHE operation writes the contents of the DataLo register to the word in the data array that is ind
by the index and byte address.

The SPR bit enables CACHE accesses to the optional Scratchpad RAMs. When this bit is set, Index Load Tag
Store Tag, and Index Store Data CACHE instructions will send reads or writes to the Scratchpad RAM port. The e
of these operations are dependent on the particular Scratchpad implementation.

This register was added to version 3.5 of the core. It is reserved in earlier versions.

ErrCtl Register Format

5.2.23 TagLo Register (CP0 Register 28, Select 0)

TheTagLoregister acts as the interface to the cache tag array. The Index Store Tag and Index Load Tag operation
CACHE instruction use theTagLoregister as the source of tag information, respectively. Note that the 4K cores do
implement theTagHi register.

TagLo Register Format

31 30 29 28 27 0

R WST SPR R

Table 5-28ErrCtl Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

WST 29

Indicates whether the tag array or the way-select array
should be read/written on Index Load/Store Tag CACHE
instructions.

Also enables the Index Store Data CACHE instruction
which writes the contents of DataLo to the data array.

R/W 0

SPR 28 Forces indexed CACHE instructions to operate on the
ScratchPad RAM instead of the cache R/W 0

R 31:30,
27:0 Must be written as zero; returns zero on reads. 0 0

31 10 9 8 7 6 5 4 3 2 1 0

PA R Valid R L LRF R
104 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

5.2 CP0 Registers
Table 5-29TagLo Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

PA 31:10 This field contains the physical address of the cache line
being stored. R/W Undefined

R 9:8 Must be written as zero; returns zero on read. 0 0

Valid 7:4 This field indicates whether the corresponding word in the
cache line is valid in the cache. R/W Undefined

R 3 Must be written as zero; returns zero on read. 0 0

L 2
Specifies the lock bit for the cache tag. When this bit is set,
the corresponding cache line should not be replaced by the
cache replacement algorithm.

R/W Undefined

LRF 1
LRF. One bit of the LRF bits for the set this cache line is a
part of. This bit is inverted every time a new cache line is
filled in the cache entry.

R/W Undefined

R 0 Must be written as zero; returns zero on read. 0 0
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 105

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 5 CP0 Registers

ruction
the
ith the
5.2.24 DataLo Register (CP0 Register 28, Select 1)

TheDataLoregister acts as the interface to the cache data array. The Index Load Tag operation of the CACHE inst
reads the corresponding data values into theDataLo register. This register was made writeable on revision 3.5 and
Index Store Data operation of the CACHE instruction was added. This operation will write the cache data array w
value of this register. Note that the 4K cores do not implement the DataHi register.

DataLo Register Format
31 0

DATA

Table 5-30DataLo Register Field Description

Fields Description Read/
Write

Reset
State

Name Bit(s)

DATA 31:0 Low-order data read from the cache data array. R/W Undefined
106 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

5.2 CP0 Registers

ram

error.

n is in
5.2.25 ErrorEPC (CP0 Register 30, Select 0)

TheErrorEPC register is a read-write register, similar to theEPC register, except thatErrorEPC is used on error
exceptions. All bits of theErrorEPC register are significant and must be writable. It is also used to store the prog
counter on Reset, Soft Reset, and non-maskable interrupt (NMI) exceptions.

TheErrorEPC register contains the virtual address at which instruction processing can resume after servicing an
This address can be:

• The virtual address of the instruction that caused the exception

• The virtual address of the immediately preceding branch or jump instruction when the error causing instructio
a branch delay slot

Unlike theEPC register, there is no corresponding branch delay slot indication for theErrorEPC register.

ErrorEPC Register Format
31 0

ErrorEPC

Table 5-31ErrorEPC Register Field Description

Fields Description Read/
Write

Reset State

Name Bit(s)

ErrorEPC 31:0 Error Exception Program Counter R/W Undefined
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 107

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 5 CP0 Registers

his
he context
ception
5.2.26 DeSave Register (CP0 Register 31)

The Debug Exception Save (DeSave) register is a read/write register that functions as a simple memory location. T
register is used by the debug exception handler to save one of the GPRs that is then used to save the rest of t
to a pre-determined memory area (such as in the EJTAG Probe). This register allows the safe debugging of ex
handlers and other types of code where the existence of a valid stack for context saving cannot be assumed.

DeSave Register Format
31 0

DESAVE

Table 5-32DeSave Register Field Description

Fields Description Read/
Write

Reset State

Name Bit(s)

DESAVE 31:0 Debug exception save contents. R/W Undefined
108 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

 fully

 the
ace. All

y

e

Chapter 6

Hardware and Software Initialization

The MIPS32 4K processor cores have only a minimal amount of hardware initialization and rely on software to
initialize the device.

This chapter contains the following sections:

• Section 6.1, "Hardware Initialized Processor State"

• Section 6.2, "Software Initialized Processor State"

6.1 Hardware Initialized Processor State

The 4K processor cores, like most MIPS processors, are not fully initialized by reset. Only a minimal subset of
processor state is cleared. This is enough to bring the core up while running in unmapped and uncached code sp
other processor states can then be initialized by software.SI_ColdReset is asserted after power-up to bring the device
into a known state. Soft reset can be forced by asserting theSI_Resetpin. This can be used when the device is alread
up and running and does not need as much initialization.

6.1.1 Coprocessor Zero State

Much of the hardware initialization occurs in Coprocessor Zero.

• Random (4Kc core only) - set to maximum value on Reset

• Wired (4Kc core only) - set to 0 on Reset

• StatusBEV - set to 1 on Reset/SoftReset

• StatusTS - cleared to 0 on Reset/SoftReset

• StatusSR - cleared to 0 on Reset, set to 1 on SoftReset

• StatusNMI - cleared to 0 on Reset/SoftReset

• StatusERL - set to 1 on Reset/SoftReset

• StatusRP - cleared to 0 on Reset

• WatchLoI,R,W - cleared to 0 on Reset

• Config fields related to static inputs - set to input value by Reset

• ConfigK0 - set to 010 (uncached) on Reset

• ConfigKU - set to 010 (uncached) on Reset (4Km and 4Kp cores only)

• ConfigK23 - set to 010 (uncached) on Reset (4Km and 4Kp cores only)

• DebugDM- cleared to 0 on Reset/SoftReset (unless EJTAGBOOT option is used to boot into DebugMode, se
Chapter 9, “EJTAG Debug Support,” for details)

• DebugLSNM - cleared to 0 on Reset/SoftReset

• DebugIBusEP - cleared to 0 on Reset/SoftReset

• DebugDBusEP - cleared to 0 on Reset/SoftReset
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 109

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 6 Hardware and Software Initialization

y is
r-up
ftware.

et or

Reset.

 require

f the
ut the

. This
32/64
 two
id this.

he arrays
can

 region.
• DebugIEXI - cleared to 0 on Reset/SoftReset

• DebugSSt- cleared to 0 on Reset/SoftReset

6.1.2 TLB Initialization (4Kc core only)

Each 4Kc TLB entry has a “hidden” state bit which is set by Reset/SoftReset and is cleared when the TLB entr
written. This bit disables matches and prevents “TLB Shutdown” conditions from being generated by the powe
values in the TLB array (when two or more TLB entries match on a single address). This bit is not visible to so

6.1.3 Bus State Machines

All pending bus transactions are aborted and the state machines in the bus interface unit are reset when a Res
SoftReset exception is taken.

6.1.4 Static Configuration Inputs

All static configuration inputs (defining the bus mode and cache size for example) should only be changed during

6.1.5 Fetch Address

Upon Reset/SoftReset, unless the EJTAGBOOT option is used, the fetch is directed to VA 0xBFC00000 (PA
0x1FC00000). This address is in kseg1,which is unmapped and uncached, so that the TLB and caches do not
hardware unitization.

6.2 Software Initialized Processor State

Software is required to initialize the following parts of the device.

6.2.1 Register File

The register file powers up in an unknown state with the exception of r0 which is always 0. Initializing the rest o
register file is not required for proper operation. Good code will generally not read a register before writing to it, b
boot code can initialize the register file for added safety.

6.2.2 TLB (4Kc Core Only)

Because of the hidden bit indicating initialization, the 4Kc core does not require TLB initialization upon ColdReset
is an implementation specific feature of the 4Kc core and cannot be relied upon if writing generic code for MIPS
processors. When initializing the TLB, care must be taken to avoid creating a “TLB Shutdown” condition where
TLB entries could match on a single address. Unique virtual addresses should be written to each TLB entry to avo

6.2.3 Caches

The cache tag and data arrays power up to an unknown state and are not affected by reset. Every tag in the cac
should be initialized to an invalid state using the CACHE instruction (typically the Index Invalidate function). This
be a long process, especially since the instruction cache initialization needs to be run in an uncached address
110 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

6.2 Software Initialized Processor State

hat are
eptions

y

ritable,
be
6.2.4 Coprocessor Zero state

Miscellaneous Cop0 states need to be initialized prior to leaving the boot code. There are various exceptions t
blocked by ERL=1 or EXL=1 and that are not cleared by Reset. These can be cleared to avoid taking spurious exc
when leaving the boot code.

• Cause: WP (Watch Pending), SW0/1 (Software Interrupts) should be cleared.

• Config: K0 should be set to the desired Cache Coherency Algorithm (CCA) prior to accessing kseg0.

• Config: (4Km and 4Kp cores only) KU and K23 should be set to the desired CCA for useg/kuseg and kseg2/3
respectively prior to accessing those regions.

• Count: Should be set to a known value if Timer Interrupts are used.

• Compare: Should be set to a known value if Timer Interrupts are used. The write to compare will also clear an
pending Timer Interrupts (Thus,Count should be set beforeCompare to avoid any unexpected interrupts).

• Status: Desired state of the device should be set.

• Other Cop0 state: Other registers should be written before they are read. Some registers are not explicitly w
and are only updated as a by-product of instruction execution or a taken exception. Uninitialized bits should
masked off after reading these registers.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 111

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 6 Hardware and Software Initialization
112 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

ime for
rences to
cur in

size and
he is

urst
urned,

several
ading
Chapter 7

Caches

This chapter describes the caches present in a MIPS32 4K processor core. It contains the following sections:

• Section 7.1, "Introduction"

• Section 7.2, "Cache Protocols"

• Section 7.3, "Instruction Cache"

• Section 7.4, "Data Cache"

• Section 7.5, "Memory Coherence Issues"

7.1 Introduction

A 4K processor core supports separate instruction and data caches which may be flexibly configured at build t
various sizes, organizations and set-associativities. The use of separate caches allows instruction and data refe
proceed simultaneously. Both caches are virtually indexed and physically tagged, allowing cache access to oc
parallel with virtual-to-physical address translation.

The instruction and data caches are independently configured. For example, the data cache can be 2 KBytes in
2-way set associative, while the instruction cache can be 8 KBytes in size and 4-way set associative. Each cac
accessed in a single processor cycle.

Cache refills are performed using a 4-word fill buffer, which holds data returned from memory during a 4-beat b
transaction. The critical miss word is always returned first. The caches are blocking until the critical word is ret
but the pipeline may proceed while the other 3 beats of the burst are still active on the bus.

Table 7-1 lists the instruction and data cache attributes:

Table 7-2shows the cache size and organization options; note that the same total cache size may be achieved with
different set-associativities. Software can identify the instruction or data cache configuration on a 4K core by re
the appropriate bits of theConfig1 register; seeSection 5.2.16, "Config1 Register (CP0 Register 16, Select 1)".

Table 7-1 Instruction and Data Cache Attributes

Parameter Instruction Data

Size 0 - 16 KBytes 0 - 16 KBytes

Number of Cache Sets 0, 64, 128 and 256 0, 64, 128 and 256

Lines Per Set (Associativity) 1 - 4 way set associative 1 - 4 way set associative

Line Size 16 Bytes 16 Bytes

Read Unit 32-bits 32-bits

Write Policy N/A write-through without
write-allocate

Miss restart after transfer of miss word miss word

Cache Locking per line per line
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 113

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 7 Caches

indexed,
hysically

a
ne for
 total
ith the
rd is
.

7.2 Cache Protocols

7.2.1 Cache Organization

The instruction and data caches each consist of two arrays: a tag array and a data array. The caches are virtually
since a virtual address is used to select the appropriate line within both the tag and data arrays. The caches are p
tagged, as the tag array contains a physical, not virtual, address.

The tag and data arrays holdn ways of information per line, corresponding to then-way set associativity of the cache,
wheren can be between 1 and 4 for a cache in a 4K core.Figure 7-1 shows the format of each line of the tag and dat
arrays for each way. A tag entry consists of the upper 22 bits of the physical address (bits [31:10]), 4 valid bits (o
each data word in the line), a lock bit and a LRF bit. A data entry contains the four 32-bit words in the line, for a
of 16 bytes. Not every word need be present in the data array, hence the per-word validity information stored w
tag. A word is the minimum valid quanta, so it is not possible to hold a partially valid subword. Once a valid wo
resident in the cache, byte, halfword or tri-byte stores can update a portion of the word.

Figure 7-1 Cache Array Formats

Table 7-2 Instruction and Data Cache Sizes

Cache Size (bytes) Way Organization Options

0K No cache

1K One 1K way

2K
One 2K way

Two 1K ways

3K Three 1K ways

4K

One 4K way

Two 2K ways

Four 1K ways

6K Three 2K ways

8K
Two 4K ways

Four 2K ways

12K Three 4K ways

16K Four 4K ways

Tag:

Data: Word3 Word2 Word1 Word0

PA Valid L LRF

32 32 32 32

22 4 1 1
114 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

7.3 Instruction Cache

ddresses

 data
s is cache
misses

gments
able

lt in a
), the

filled
its for
 entries

zero,
0 will

ked,
tify the
 during

gged
aving to

d into
e.

cked or

cache
ait for
7.2.2 Cacheability Attributes

All the 4K cores support the following cacheability attributes:

• Uncached: Addresses in a memory area indicated as uncached are not read from the cache. Stores to such a
are written directly to main memory, without changing cache contents.

• Write-through : Loads and instruction fetches first search the cache, reading main memory only if the desired
does not reside in the cache. On data store operations, the cache is first searched to see if the target addres
resident. If it is resident, the cache contents are updated, and main memory is also written. If the cache lookup
on a store, only main memory is written. Hence, the allocation policy on a cache miss is read-allocate only.

Some segments of memory employ a fixed caching policy; for example the kseg1 is always uncacheable. Other se
of memory allow the caching policy to be selected by software. Generally, the cache policy for these programm
regions is defined by a cacheability attribute field associated with that region of memory. SeeChapter 3, “Memory
Management,” on page 29 for further details.

7.2.3 Replacement Policy

The replacement policy refers to how a way is chosen to hold an incoming cache line on a miss which will resu
cache fill, when a cache is at least two-way set associative. In a direct mapped cache (one-way set associative
replacement policy is irrelevant since there is only one way available. The replacement policy is least recently
(LRF), first considering invalid ways and excluding any locked ways. On a cache miss, the valid, lock and LRF b
each tag entry of the selected line may be used to determine the way which will be chosen. The number of tag
which are looked at depends on the set associativity of the cache.

First the valid bits are inspected. If an invalid way is available, as determined by all 4 of the valid bits in a tag being
then that way will be selected. If more than one invalid way is available, then the first one found starting from way
be selected.

If all ways are valid, then any locked ways will be excluded from consideration for replacement. If all ways are loc
then no replacement can occur to that line. For the unlocked ways, the LRF bits from each tag are used to iden
way which has been filled least recently, and that way is selected for replacement. When the new tag is written
the line fill, its LRF bit is modified to indicate that way is no longer the least recently filled.

7.3 Instruction Cache

The instruction cache is an optional on-chip memory block of up to 16 KBytes. The virtually indexed, physically ta
cache allows the virtual-to-physical address translation to occur in parallel with the cache access rather than h
wait for the physical address translation.

All of the cores support instruction cache-locking. Cache locking allows critical code or data segments to be locke
the cache on a “per-line” basis, enabling the system programmer to maximize the efficiency of the system cach

The cache locking function is always enabled on all instruction cache entries. Entries can then be marked as lo
unlocked on a per entry basis using the CACHE instruction.

7.4 Data Cache

The data cache is an optional on-chip memory block of up to 16 KBytes. The virtually indexed, physically tagged
allows the virtual-to-physical address translation to occur in parallel with the cache access rather than having to w
the physical address translation.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 115

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 7 Caches

nts to be
cted for

nlocked

n. Since
hus
nce is

ust be
ent to
ctually
ocations
uction.

’s write
The core also supports a data cache locking mechanism identical to the instruction cache. Critical data segme
locked into the cache on a “per-line” basis. The locked contents can be updated on a store hit, but cannot be sele
replacement on a miss.

The cache locking function is always enabled on all data cache entries. Entries can then be marked as locked or u
on a per entry basis using the CACHE instruction.

7.5 Memory Coherence Issues

A cache presents coherency issues within the memory hierarchy which must be considered in the system desig
a cache holds a copy of memory data, it is possible for another memory master to modify a memory location, t
making other copies of that location stale if those copies are still in use. A detailed discussion of memory cohere
beyond the scope of this document, but following are a few related comments.

A 4K processor contains no direct hardware support for managing coherency with respect to its caches, so it m
handled via system design or software. The 4K caches are write-through, so all data writes will eventually be s
memory. Due to write buffers, however, there could be a delay in how long it takes for the write to memory to a
occur. If another memory master updates cacheable memory which could also be in the 4K caches, then those l
may need to be flushed from the cache. The only way to accomplish this invalidation is by use of the CACHE instr

The SYNC instruction may also be useful to software enforcing memory coherence, as it flushes the 4K processor
buffers.
116 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

ctive
truction

. The

r occurs

e

on the
g of the
rupt
t or let it

nt
the error

e
ks.

e as the
bug
Chapter 8

Power Management

The MIPS32 4K processor cores offer a number of power management features, including low-power design, a
power management and power-down modes of operation. The core is a static design that supports a WAIT ins
designed to signal the rest of the device that execution and clocking should be halted, reducing system power
consumption during idle periods.

The core provides two mechanisms for system level low power support discussed in the following sections.

• Section 8.1, "Register-Controlled Power Management"

• Section 8.2, "Instruction-Controlled Power Management"

8.1 Register-Controlled Power Management

The RP bit in the CP0Statusregister a standard software mechanism for placing the system into a low power state
state of the RP bit is available externally via theSI_RPsignal. Three additional pins,SI_EXL, SI_ERL, andEJ_DebugM
support the power management function by allowing the user to change the power state if an exception or erro
while the core is in a low power state.

Setting the RP bit of the CP0Statusregister causes the core to assert theSI_RPsignal. The external agent can then decid
whether to reduce the clock frequency and place the core into power down mode.

If an interrupt is taken while the device is in power down mode, that interrupt may need to be serviced depending
needs of the application. The interrupt causes an exception which in turn causes the EXL bit to be set. The settin
EXL bit causes the assertion of theSI_EXL signal on the external bus, indicating to the external agent that an inter
has occurred. At this time the external agent can choose to either speed up the clocks and service the interrup
be serviced at the lower clock speed.

The setting of the ERL bit causes the assertion of theSI_ERLsignal on the external bus, indicating to the external age
that an error has occurred. At this time the external agent can choose to either speed up the clocks and service
or let it be serviced at the lower clock speed.

Similarly, theEJ_DebugM signal indicates that the processor is in debug mode. Debug mode is entered when th
processor takes a debug exception. If fast handling of this is desired, the external agent can speed up the cloc

The core provides four power down signals that are part of the system interface. Three of the pins change stat
corresponding bits in the CP0Status register are set or cleared. The fourth pin indicates that the processor is in de
mode.

• TheSI_RP signal represents the state of the RP bit (27) in the CP0Status register.

• TheSI_EXL signal represents the state of the EXL bit (1) in the CP0Status register.

• TheSI_ERL signal represents the state of the ERL bit (2) in the CP0Status register.

• TheEJ_DebugM signal indicates that the processor has entered debug mode.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 117

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 8 Power Management

idle
ipeline

stalls
er

ode and
8.2 Instruction-Controlled Power Management

The second mechanism for invoking power down mode is through execution of the WAIT instruction. If the bus is
at the time the WAIT instruction reaches the M stage of the pipeline, the internal clocks are suspended and the p
is frozen. However, the internal timer and some of the input pins (SI_Int[5:0], SI_NMI, SI_Reset, SI_ColdReset, and
EJ_DINT) continue to run. If the bus is not idle at the time the WAIT instruction reaches the M stage, the pipeline
until the bus becomes idle, at which time the clocks are stopped. Once the CPU is in instruction controlled pow
management mode, any enabled interrupt, NMI, debug interrupt, or reset condition causes the CPU to exit this m
resume normal operation. While the part is in this low-power mode, theSI_SLEEP signal is asserted to indicate to
external agents what the state of the chip is.
118 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

points,
Chapter 9

EJTAG Debug Support

The EJTAG debug logic in the MIPS32 4K processor cores provide two optional modules: one for hardware break
and the other is a Test Access Port (TAP) for a dedicated connection to a debug host.

This chapter contains the following sections.

• Section 9.1, "Debug Control Register"

• Section 9.2, "Hardware Breakpoints"

• Section 9.3, "Test Access Port (TAP)"

• Section 9.4, "EJTAG TAP Registers"

• Section 9.5, "Processor Accesses"
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 119

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 9 EJTAG Debug Support

ftware

to the
 and a

asking
 on no
y cause
onsult

g
w takes
9.1 Debug Control Register

The Debug Control Register (DCR) register controls and provides information about debug issues, and is always
provided with the CPU core. The register is memory mapped in drseg at offset 0x0.

The DataBrk and InstBrk bits indicates if hardware breakpoints are included in the implementation, and debug so
is expected to read hardware breakpoint registers for additional information.

Hardware and software interrupts are maskable for non-debug mode with the INTE bit, which works in addition
other mechanisms for interrupt masking and enabling. NMI is maskable in non-debug mode with the NMIE bit,
pending NMI is indicated through the NMIP bit.

The SRE bit allows implementation dependent masking of none, some or all sources for soft reset. The soft reset m
may only be applied to a soft reset source, if that source can be efficiently masked in the system, thus resulting
reset at all. If that is not possible, then that soft reset source should not be masked, since a “half” soft reset ma
the system to fail or hang. There is no automatic indication of whether the SRE is effective, but the user must c
system documentation.

The PE bit reflects the ProbEn bit from the EJTAG Control register (ECR), whereby the probe can indicate to the debu
software running on the CPU if the probe expects to service dmseg accesses. The reset value in the table belo
effect on both hard and soft reset.

Debug Control Register
31 30 29 28 18 17 16 15 5 4 3 2 1 0

Res ENM Res DB IB Res INTE NMIE NMIP SRE PE

Table 9-1Debug Control Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

Res 31:30 reserved R 0

ENM 29

Endianess in Kernel and Debug mode. This bit indicates
the endianess in Kernel and Debug mode.

0: Little Endian
1: Big Endian

R Preset

Res 28:18 reserved R 0

DB 17

Data Break Implemented. This bit indicates if the Data
Break feature is implemented.

0: No Data Break feature implemented
1: Data Break feature is implemented

R Preset

IB 16

Instruction Break Implemented. This bit indicates if the
Instruction Break feature is implemented.

0: No Instruction Break feature implemented
1: Instruction Break feature is implemented

R Preset

Res 15:5 reserved R 0
120 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

9.1 Debug Control Register
INTE 4

Interrupt Enable in Normal Mode. This bit provides the
hardware and software interrupt enable for non-debug
mode, in addition to other masking mechanisms:

0: Interrupt disabled.
1: Interrupts enabled (depending on other enabling
mechanisms).

R/W 1

NMIE 3

Non-Maskable Interrupt Enable for non-debug mode.

0: NMI disabled.
1: NMI enabled.

R/W 1

NMIP 2

NMI Pending Indication.

0: No NMI pending.
1: NMI pending.

R 0

SRE 1

Soft Reset Enable.

This bit allows the system to mask soft resets. The core
does not internally mask soft reset. Rather the state of this
bit appears on theEJ_SRstE external output signal,
allowing the system to mask soft resets if desired.

R/W 1

PE 0

Probe Enable.

This bit reflects the ProbEn bit in the EJTAG Control
register.

0: No accesses to dmseg allowed1: EJTAG probe services
accesses to dmseg

R

Same value as
ProbEn in ECR

(seeTable 9-23)

Table 9-1Debug Control Register Field Descriptions (Continued)

Fields Description Read/
Write

Reset State

Name Bit(s)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 121

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 9 EJTAG Debug Support

actions.
 a debug
and are
guish

 Data

een the
 core

gisters

ruction

ar to the
based on
re value.
9.2 Hardware Breakpoints

Hardware breakpoints provide for the comparison by hardware of executed instructions and data load/store trans
It is possible to set instruction breakpoints on addresses even in ROM area, and set data breakpoints to cause
exception on a specific data transaction. Instruction and data hardware breakpoints are alike for may aspects,
thus described in parallel in the following. The term hardware is not applied to breakpoint, unless required to distin
it from software breakpoint.

There are two types of simple hardware breakpoints implemented in the 4K cores: Instruction breakpoints and
breakpoints.

Each core can be configured with the following breakpoint options:

• No data or instruction breakpoints

• Two instruction and one data breakpoint

• Four instruction and two data breakpoints

9.2.1 Features of Instruction Breakpoint

Instruction breaks occur on instruction fetch operations and the break is set on the virtual address on the bus betw
CPU and the instruction cache. Instruction breaks can also be made on the ASID value used by the MMU (4Kc
only). Finally, a mask can be applied to the virtual address to set breakpoints on a range of instructions.

Instruction breakpoints compare the virtual address of the executed instructions (PC) and the ASID, with the re
for each instruction breakpoint including masking of address and ASID. An overview is shown inFigure 9-1andFigure
9-2.

Figure 9-1 Instruction Hardware Breakpoint Overview (4Kc Core)

Figure 9-2 Instruction Hardware Breakpoint Overview (4Km and 4Kp Core)

When a instruction breakpoint matches, a debug exception and/or a trigger is generated. An internal bit in the inst
breakpoint registers is set to indicate that the match occurred.

9.2.2 Features of Data Breakpoint

Data breakpoints occur on load/store transactions. Breakpoints are set on virtual address and ASID values, simil
Instruction breakpoint. Data breakpoints can be set on a load, a store or both. Data breakpoints can also be set
the value of the load/store operation. Finally, masks can be applied to both the virtual address and the load/sto

Trigger Indication

PC

ASID

Instruction
Hardware
Breakpoint

Debug Exception

Trigger Indication
PC

Instruction
Hardware
Breakpoint

Debug Exception
122 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

9.2 Hardware Breakpoints

saction
point

ta
ception

ception

n. The
Data breakpoints compare the transaction type (TYPE), which may be load or store, the virtual address of the tran
(ADDR), the ASID, accessed bytes (BYTELANE) and data value (DATA), with the registers for each data break
including masking or qualification on the transaction properties. An overview is shown inFigure 9-3 andFigure 9-4.

Figure 9-3 Data Hardware Breakpoint Overview (4Kc Core)

Figure 9-4 Data Hardware Breakpoint Overview (4Km/4Kp Core)

When a data breakpoint matches, a debug exception and/or a trigger is generated, and an internal bit in the da
breakpoint registers is set to indicate that the match occurred. The match is either precise whereby the debug ex
or trigger occurs on the instruction that caused the breakpoint to match, or it is imprecise whereby the debug ex
or trigger occurs later in the program flow.

9.2.3 Overview of Registers for Instruction Breakpoints

The register with implementation indication and status for instruction breakpoints in general is shown inTable 9-2.

The four instruction breakpoints are numbered 0 to 3 for registers and breakpoints, and the number is indicated by
registers for each breakpoint are shown inTable 9-3.

Table 9-2 Overview of Status Register for Instruction Breakpoints

Register Mnemonic Register Name and Description

IBS Instruction Breakpoint Status

Table 9-3 Overview of Registers for each Instruction Breakpoint

Register Mnemonic Register Name and Description

IBAn Instruction Breakpoint Address n

IBMn Instruction Breakpoint Address Mask n

IBASIDn Instruction Breakpoint ASID n (4Kc core)

IBCn Instruction Breakpoint Control n

Data
 Hardware
Breakpoint

Debug Exception

Trigger Indication
ASID

ADDR

TYPE

BYTELANE

DATA

Data
 Hardware
Breakpoint

Debug Exception

Trigger Indication

ADDR

TYPE

BYTELANE

DATA
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 123

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 9 EJTAG Debug Support

 n. The

nts only

TE bits

ction in
h. The
aligned

it level,
e the
tation.

match
9.2.4 Registers for Data Breakpoint Setup

The register with implementation indication and status for data breakpoints in general is shown inTable 9-4.

The two data breakpoints are numbered 0 and 1 for registers and breakpoints, and the number is indicated by
registers for each breakpoint are shown inTable 9-5.

9.2.5 Conditions for Matching Breakpoints

A number of conditions must be fulfilled in order for a breakpoint to match on an executed instruction or a data
transaction, and the conditions for matching instruction and data breakpoints are described below. The breakpoi
match for instructions executed in non-debug mode, thus never on instructions executed in debug mode.

The match of an enabled breakpoint can either generate a debug exception or a trigger indication. The BE and/or
in theIBCn or DBCn registers are used to enable the breakpoints.

Debug software should not configure breakpoints to compare on ASID value, unless a TLB is present in the
implementation (4Kc core only).

9.2.5.1 Conditions for Matching Instruction Breakpoint

When an instruction breakpoint is enabled, that breakpoint is evaluated for the address of every executed instru
non-debug mode, including execution of instructions at an address causing an address error on instruction fetc
breakpoint is not evaluated on instructions from speculative fetch or execution, nor for addresses which are un
with an executed instruction.

Match of the breakpoint depends on the virtual address of the executed instruction (PC) which can be masked at b
and match may also include optional compare of ASID value. The registers for each instruction breakpoint hav
values and mask used in the compare, and the equation that determines the match is shown below in C-like no

IB_match =
(! IBCn ASIDuse || (ASID == IBASIDn ASID)) &&
(<all 1’s> == (IBMnIBM | ~ (PC ^ IBAn IBA))

The match indication for instruction breakpoints is always precise, i.e. indicated on the instruction causing the IB_
to be true.

Table 9-4 Overview of Status Register for Data Breakpoints

Register Mnemonic Register Name and Description

DBS Data Breakpoint Status

Table 9-5 Overview of Registers for each Data Breakpoint

Register Mnemonic Register Name and Description

DBAn Data Breakpoint Address n

DBMn Data Breakpoint Address Mask n

DBASIDn Data Breakpoint ASID n (4Kc core)

DBCn Data Breakpoint Control n

DBVn Data Breakpoint Value n
124 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

9.2 Hardware Breakpoints

truction
 on data
plicit
tination

the data
nd the

ue, and
, and

NE as
mpare is

ATA) is
tch
up of the

ad/store
match

e, as
9.2.5.2 Conditions for Matching Data Breakpoints

When a data breakpoint is enabled, that breakpoint is evaluated for every data transaction due to a load/store ins
executed in non-debug mode, including load/store for coprocessor, and transactions causing an address error
access. The breakpoint is not evaluated due to PREF instruction or other transactions which are not part of ex
load/store transactions in the execution flow, nor for addresses which are not the explicit load/store source or des
address.

Match of the breakpoint depends on the transaction type (TYPE) as load or store, the address, and optionally
value of a transaction. The registers for each data breakpoint has the values and mask used in the compare, a
equations that determine the match are shown below in C-like notation.

The overall match equation is DB_match:

DB_match =
(((TYPE == load) && ! DBCnNoLB) ||

((TYPE == store) && ! DBCnNoSB)) &&
DB_addr_match && (DB_no_value_compare || DB_value_match)

Match on the address part, DB_addr_match, depends on virtual address of the transaction (ADDR), the ASID val
the accessed bytes (BYTELANE) where BYTELANE[0] is 1 only if the byte at bits [7:0] on the bus is accessed
BYTELANE[1] is 1 only if byte at bits [15:8] is accessed, etc. The DB_addr_match is shown below.

DB_addr_match =
(! DBCnASIDuse || (ASID == DBASIDnASID)) &&
(<all 1’s> == (DBMnDBM | ~ (ADDR ^ DBAnDBA))) &&
(<all 0’s> != (~ BAI & BYTELANE))

The size ofDBCnBAI and BYTELANE is 4 bits.

Data value compare is included in the match condition for the data breakpoint depending on the bytes (BYTELA
described above) accessed by the transaction, and the contents of breakpoint registers. The DB_no_value_co
shown below.

DB_no_value_compare =
(<all 1’s> == (DBCnBLM | DBCnBAI | ~ BYTELANE))

The size ofDBCnBLM, DBCnBAI, and BYTELANE is 4 bits.

In case data value compare is required, DB_no_value_compare is false, then the data value from the data bus (D
compared and masked with the registers for the data breakpoint. The endianess is not considered in these ma
equations for value, as the compare uses the data bus value directly, thus debug software is responsible for set
breakpoint corresponding with endianess.

DB_value_match =
((DATA[7:0] == DBVnDBV[7:0]) || ! BYTELANE[0] || DBCnBLM[0] || DBCnBAI[0]) &&
((DATA[15:8] == DBVnDBV[15:8]) || ! BYTELANE[1] || DBCnBLM[1] || DBCnBAI[1]) &&
((DATA[23:16] == DBVnDBV[23:16]) || ! BYTELANE[2] || DBCnBLM[2] || DBCnBAI[2])&&
((DATA[31:24] == DBVnDBV[31:24]) || ! BYTELANE[3] || DBCnBLM[3] || DBCnBAI[3])

The match for a data breakpoint is always precise, since the match expression is fully evaluated at the time the lo
instruction is executed. A true DB_match can thereby be indicated on the very same instruction causing the DB_
to be true.

9.2.6 Debug Exceptions from Breakpoints

Instruction and data breakpoints may be set up to generate a debug exception when the match condition is tru
described below.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 125

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 9 EJTAG Debug Support

tch

load or
iving a

e
ction,

tion
.

nd the

s not

value is

ecuted,
result

 a debug

bug

ug

ction is
curred
able to
9.2.6.1 Debug Exception by Instruction Breakpoint

If the breakpoint is enabled by BE in theIBCn register, then a debug instruction break exception occurs if the IB_ma
equation is true. The corresponding BS[n] bit in theIBS register is set when the breakpoint generates the debug
exception.

The debug instruction break exception is always precise, so theDEPCregister and DBD bit in theDebugregister points
to the instruction that caused the IB_match equation to be true.

The instruction receiving the debug exception does not update any registers due to the instruction, nor does any
store by that instruction occur. Thus a debug exception from a data breakpoint can not occur for instructions rece
debug instruction break exception.

The debug handler usually returns to the instruction causing the debug instruction break exception, whereby th
instruction is executed. Debug software is responsible for disabling the breakpoint when returning to the instru
otherwise the debug instruction break exception reoccurs.

9.2.6.2 Debug Exception by Data Breakpoint

If the breakpoint is enabled by BE in theDBCn register, then a debug exception occurs when the DB_match condi
is true. The corresponding BS[n] bit in theDBS register is set when the breakpoint generates the debug exception

A debug data break exception occurs when a data breakpoint indicates a match. In this case theDEPCregister and DBD
bit in theDebug register points to the instruction that caused the DB_match equation to be true.

The instruction causing the debug data break exception does not update any registers due to the instruction, a
following applies to the load or store transaction causing the debug exception:

• A store transaction is not allowed to complete the store to the memory system.

• A load transaction with no data value compare, i.e. where the DB_no_value_compare is true for the match, i
allowed to complete the load.

• A load transaction for a breakpoint with data value compare must occur from the memory system, since the
required in order to evaluate the breakpoint.

The result of this is that the load or store instruction causing the debug data break exception appears as not ex
with the exception that a load from the memory system do occur for a breakpoint with data value compare, but the
of this load is discarded since the register file is not updated by the load.

If both data breakpoints without and with data value compare would match the same transaction and generate
exception, then the following rules apply with respect to updating the BS[n] bits.

• On both a load and store the BS[n] bits are required to be set for all matching breakpoints without data value
compare.

• On a store then BS[n] bits are allowed but not required to be set for all matching breakpoints with data value
compare, but either all or none of the BS[n] bits must be set for these breakpoints.

• On a load then no of the BS[n] bits are allowed to be set, since the load is not allowed to occur due to the de
exception from a breakpoint without data value compare, and a valid data value is therefore not returned.

Any BS[n] bit set prior to the match and debug exception are kept set, since BS[n] bits are only cleared by deb
software.

The debug handler usually returns to the instruction causing the debug data break exception, whereby the instru
re-executed. This re-execution may result in a repeated load from system memory, since the load may have oc
previously in order to evaluate the breakpoint as described above. I/O devices with side effects on load must be
126 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

9.2 Hardware Breakpoints

on such
e the

 generate

s, only
allow such reloads, or debug software should alternatively avoid setting data breakpoint with data value compare
I/O devices. Debug software is responsible for disabling breakpoints when returning to the instruction, otherwis
debug data break exception will reoccur.

9.2.7 Breakpoint used as Triggerpoint

Both instruction and data hardware breakpoints may be set up by software so a matching breakpoint does not
a debug exception, but only an indications through the BS[n] bit. The TE bit in theIBCnor DBCnregister controls if a
instruction respectively data breakpoint is used as a so-called triggerpoint. The triggerpoints are, like breakpoint
compared for instructions executed in non-debug mode.

The BS[n] bit in theIBS or DBS register is set when the respective IB_match or DB_match bit is true.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 127

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 9 EJTAG Debug Support

and are
9.2.8 Instruction Breakpoint Registers

The registers for instruction breakpoints are described below. These registers have implementation information
used to set up the instruction breakpoints. All registers are in drseg, and the addresses are shown inTable 9-6.

An example of some of the registers;IBA0 is at offset 0x1100 andIBC2 is at offset 0x1318.

Table 9-6 Addresses for Instruction Breakpoint Registers

Offset in drseg Register
Mnemonic

Register Name and Description

0x1000 IBS Instruction Breakpoint Status

0x1100 + n * 0x100 IBAn Instruction Breakpoint Address n

0x1108 + n * 0x100 IBMn Instruction Breakpoint Address Mask n

0x1110 + n * 0x100 IBASIDn Instruction Breakpoint ASID n (4Kc core)

0x1118 + n * 0x100 IBCn Instruction Breakpoint Control n

Note: n is breakpoint number in range 0 to 3 (or 0 to 1, depending on the implemented hardware)
128 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

9.2 Hardware Breakpoints
9.2.8.1 Instruction Breakpoint Status (IBS) Register

Compliance Level: Implemented only if any instruction breakpoints.

The Instruction Breakpoint Status (IBS) register holds implementation and status information about the instruction
breakpoints.

The ASID applies to all the instruction breakpoints for the 4K core.

IBS Register Format
31 30 29 28 27 24 23 4 3 0

Res ASID
sup

Res BCN Res BS

Table 9-7IBS Register Field Descriptions

Fields Description Read/Write Reset State

Name Bit(s)

Res 31 Must be written as zero; returns zero on read. 0 0

ASIDsup 30

This bit indicates that ASID compare is supported in
instruction breakpoints (4Kc core).

Must be written as zero; returns zero on read (4Km/4Kp cores).

4Kc cores: R

4Km/4Kp cores: 0

4Kc core- 1

4Km/4Kp cores- 0

Res 29:28 Must be written as zero; returns zero on read. 0 0

BCN 27:24 Number of instruction breakpoints implemented R 4 or 2a

Res 23:4 Must be written as zero; returns zero on read. 0 0

BS 3:0
Break status for breakpoint n is at BS[n], with n as 0 to 3b. The
bit is set to 1 when the condition for the corresponding
breakpoint has matched.

R/W Undefined

Note: [a] Based on actual hardware implemented.

Note: [b] In case of only 2 Instruction breakpoints, bit 2 and 3 become reserved.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 129

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 9 EJTAG Debug Support

nt n.
9.2.8.2 Instruction Breakpoint Address n (IBAn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address n (IBAn) register has the address used in the condition for instruction breakpoi

IBAn Register Format
31 0

IBA

Table 9-8IBAn Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

IBA 31:0 Instruction breakpoint address for condition R/W Undefined
130 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

9.2 Hardware Breakpoints

for
9.2.8.3 Instruction Breakpoint Address Mask n (IBMn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address Mask n (IBMn) register has the mask for address compare used in the condition
instruction breakpoint n.

IBMn Register Format
31 0

IBM

Table 9-9IBMn Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

IBM 31:0

Instruction breakpoint address mask for condition:

0: Corresponding address bit not masked

1: Corresponding address bit masked

R/W Undefined
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 131

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 9 EJTAG Debug Support
9.2.8.4 Instruction Breakpoint ASID n (IBASIDn) Register

Compliance Level:Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint ASID n (IBASIDn) register has the ASID value used in the compare for instruction
breakpoint n. The number of bits in the ASID field is 8, to match the ASID size in the TLB.

This register is only valid for the 4Kc core.

IBASIDn Register Format
31 8 7 0

Res ASID

Table 9-10IBASIDn Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

Res 31:8 Must be written as zero; returns zero on read. 0 0

ASID 7:0 Instruction breakpoint ASID value for compare: R/W Undefined
132 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

9.2 Hardware Breakpoints
9.2.8.5 Instruction Breakpoint Control n (IBCn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Control n (IBCn) register controls setup of instruction breakpoint n.

IBCn Register Format
31 24 23 22 3 2 1 0

Res ASID
use

Res TE Res BE

Table 9-11IBCn Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bits

Res 31:24 Must be written as zero; returns zero on read. 0 0

ASIDuse 23

Use ASID value in compare for instruction breakpoint n (4Kc
core):

0: Don’t use ASID value in compare

1: Use ASID value in compare

Must be written as zero; returns zero on read (4Km/4Kp cores).

4Kc core- R/W

4Km/4Kp cores - 0
Undefined

Res 22:3 Must be written as zero; returns zero on read. 0 0

TE 2

Use instruction breakpoint n as triggerpoint:

0: Don’t use it as triggerpoint

1: Use it as triggerpoint

R/W 0

Res 1 Must be written as zero; returns zero on read. 0 0

BE 0

Use instruction breakpoint n as breakpoint:

0: Don’t use it as breakpoint

1: Use it as breakpoint

R/W 0
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 133

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 9 EJTAG Debug Support

used to
9.2.9 Data Breakpoint Registers

The registers for data breakpoints are described below. These registers have implementation information and are
set up the data breakpoints. All registers are in drseg, and the addresses are shown in sectionTable 9-12.

An example of some of the registers;DBM0 is at offset 0x2108 andDBV1 is at offset 0x2220.

Table 9-12 Addresses for Data Breakpoint Registers

Offset in drseg Register
Mnemonic

Register Name and Description

0x2000 DBS Data Breakpoint Status

0x2100 + 0x100 * n DBAn Data Breakpoint Address n

0x2108 + 0x100 * n DBMn Data Breakpoint Address Mask n

0x2110 + 0x100 * n DBASIDn Data Breakpoint ASID n (4K core)

0x2118 + 0x100 * n DBCn Data Breakpoint Control n

0x2120 + 0x100 * n DBVn Data Breakpoint Value n

Note: n is breakpoint number as 0 or 1 (or just 0, depending on the implemented hardware)
134 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

9.2 Hardware Breakpoints

ts.
9.2.9.1 Data Breakpoint Status (DBS) Register

Compliance Level: Implemented only if any data breakpoints.

The Data Breakpoint Status (DBS) register holds implementation and status information about the data breakpoin

The ASID applies to all the data breakpoints for the 4Kc core.

DBS Register Format
31 30 29 28 27 24 23 2 1 0

Res ASID
sup

Res BCN Res BS

Table 9-13DBS Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

Res 31 Must be written as zero; returns zero on read. 0 0

ASIDsup 30

4Kc core: Indicates that ASID compare is supported in
data breakpoints.

4Km/4Kp cores: Must be written as zero; returns zero
on read.

4Kc core: R

4Km/4Kp cores: 0

4Kc core - 1

4Km/4Kp cores - 0

Res 29:28 Must be written as zero; returns zero on read. 0 0

BCN 27:24 Number of data breakpoints implemented R 2 or 1a

Res 23:2 Must be written as zero; returns zero on read. 0 0

BS 1:0
Break status for breakpoint n is at BS[n], with n as 0 to
1b. The bit is set to 1 when the condition for the
corresponding breakpoint has matched.

R/W0 Undefined

Note: [a] Based on actual hardware implemented.

Note: [b] In case of only 1 data breakpoint bit 1 become reserved.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 135

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 9 EJTAG Debug Support
9.2.9.2 Data Breakpoint Address n (DBAn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Address n (DBAn) register has the address used in the condition for data breakpoint n.

DBAn Register Format
31 0

DBA

Table 9-14DBAn Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

DBA 31:0 Data breakpoint address for condition R/W Undefined
136 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

9.2 Hardware Breakpoints

data
9.2.9.3 Data Breakpoint Address Mask n (DBMn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Address Mask n (DBMn) register has the mask for address compare used in the condition for
breakpoint n.

DBMn Register Format
31 0

DBM

Table 9-15DBMn Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

DBM 31:0

Data breakpoint address mask for condition:

0: Corresponding address bit not masked

1: Corresponding address bit masked

R/W Undefined
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 137

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 9 EJTAG Debug Support
9.2.9.4 Data Breakpoint ASID n (DBASIDn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint ASID n (DBASIDn) register has the ASID value used in the compare for data breakpoint n.

This register is only valid in the 4Kc core.

DBASIDn Register Format
31 8 7 0

Res ASID

Table 9-16DBASIDn Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

Res 31:8 Must be written as zero; returns zero on read. 0 0

ASID 7:0 Data breakpoint ASID value for compare: R/W Undefined
138 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

9.2 Hardware Breakpoints
9.2.9.5 Data Breakpoint Control n (DBCn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Control n (DBCn) register controls setup of data breakpoint n.

DBCn Register Format
31 24 23 22 18 17 14 13 12 11 8 7 4 3 2 1 0

Re ASID
use

Res BAI NoSB NoLB Res BLM Res TE Res BE

Table 9-17DBCn Register Field Descriptions

Fields Description Read/Write Reset State

Name Bits

Res 31:24 Must be written as zero; returns zero on read. 0 0

ASIDuse 23

Use ASID value in compare for data breakpoint n (4Kc core):

0: Don’t use ASID value in compare

1: Use ASID value in compare

Must be written as zero; returns zero on read (4Km/4Kp cores).

4Kc core - R/W

4Km/4Kp
cores - 0

Undefined

Res 22:18 Must be written as zero; returns zero on read. 0 0

BAI 17:14

Byte access ignore controls ignore of access to specific byte.
BAI[0] ignores access to byte at bits [7:0] of the data bus,
BAI[1] ignores access to byte at bits [15:8], etc.:

0: Condition depends on access to corresponding byte

1: Access for corresponding byte is ignored

R/W Undefined

NoSB 13

Controls if condition for data breakpoint is never fulfilled on a
store transaction:

0: Condition may be fulfilled on store transaction

1: Condition is never fulfilled on store transaction

R/W Undefined

NoLB 12

Controls if condition for data breakpoint is never fulfilled on a
load transaction:

0: Condition may be fulfilled on load transaction

1: Condition is never fulfilled on load transaction

R/W Undefined

Res 11:8 Must be written as zero; returns zero on read. 0 0

BLM 7:4

Byte lane mask for value compare on data breakpoint. BLM[0]
masks byte at bits [7:0] of the data bus, BLM[1] masks byte at
bits [15:8], etc.:

0: Compare corresponding byte lane

1: Mask corresponding byte lane

R/W Undefined

Res 3 Must be written as zero; returns zero on read. 0 0
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 139

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 9 EJTAG Debug Support
TE 2

Use data breakpoint n as triggerpoint:

0: Don’t use it as triggerpoint

1: Use it as triggerpoint

R/W 0

Res 1 Must be written as zero; returns zero on read. 0 0

BE 0

Use data breakpoint n as breakpoint:

0: Don’t use it as breakpoint

1: Use it as breakpoint

R/W 0

Table 9-17DBCn Register Field Descriptions (Continued)

Fields Description Read/Write Reset State

Name Bits
140 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

9.2 Hardware Breakpoints
9.2.9.6 Data Breakpoint Value n (DBVn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Value n (DBVn) register has the value used in the condition for data breakpoint n.

DBVn Register Format
31 0

DBV

Table 9-18DBVn Register Field Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

DBV 31:0 Data breakpoint value for condition R/W Undefined
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 141

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 9 EJTAG Debug Support

hieved
ebug
9.3 Test Access Port (TAP)

The following main features are supported by the TAP module:

• 5-pin industry standard JTAG Test Access Port (TCK, TMS, TDI, TDO, TRST_N) interface, which is compatible with
IEEE Std. 1149.1.

• Target chip and EJTAG feature identification available through the Test Access Port (TAP) controller.

• The processor can access external memory on the EJTAG Probe serially through the EJTAG pins. This is ac
through so-called Processor Access (PA), and is used to eliminate the use of the user’s system memory for d
routines.

• Support for both ROM based debugger and debugging both through TAP.

9.3.1 EJTAG Internal and External Interfaces

The external interface of the EJTAG Module consists of the 5 signals defined by the IEEE standard.

Table 9-19 EJTAG Interface Pins

Pin Type Description

TCK I

Test Clock Input

Input clock used to shift data into or out of the Instruction or data
registers. TheTCK clock is independent of the processor clock, so the
EJTAG probe can driveTCK independently of the processor clock
frequency.

The core signal for this is calledEJ_TCK

TMS I

Test Mode Select Input

TheTMS input signal is decoded by the TAP controller to control test
operation.TMS is sampled on the rising edge ofTCK.

The core signal for this is calledEJ_TMS

TDI I

Test Data Input

Serial input data (TDI) is shifted into the Instruction register or data
registers on the rising edge of theTCK clock, depending on the TAP
controller state.

The core signal for this is calledEJ_TDI

TDO O

Test Data Output

Serial output data is shifted from the Instruction or data register to the
TDOpin at the falling edge of theTCKclock. When no data is shifted out,
theTDO is 3-stated.

The core signal for this is calledEJ_TDO with output enable control by
EJ_TDOzstate.
142 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

9.3 Test Access Port (TAP)

mall

 the
egisters,
ction

lowing

ata
Pause

 to hold
ot output
9.3.2 Test Access Port Operation

The TAP controller is controlled by the Test Clock (TCK) and Test Mode Select (TMS) inputs. These two inputs
determine whether an the Instruction register scan or data register scan is performed. The TAP consists of a s
controller, driven by theTCK input, which responds to theTMSinput as shown in the state diagram inFigure 9-5. The
TAP uses both clock edges ofTCK. TMS andTDI are sampled on the rising edge ofTCK, whileTDO changes on the
falling edge ofTCK.

At power-up the TAP is forced into theTest-Logic-Reset either by low value onTRST_N. The TAP instruction register
is thereby reset to IDCODE. No other parts of the EJTAG hardware are reset through theTest-Logic-Reset state.

When test access is required, a protocol is applied via theTMS andTCK inputs, causing the TAP to exit the
Test-Logic-Resetstate and move through the appropriate states. From theRun-Test/Idlestate, an Instruction register scan
or a data register scan can be issued to transition the TAP through the appropriate states shown inFigure 9-5.

The states of the data and instruction register scan blocks are mirror images of each other adding symmetry to
protocol sequences. The first action that occurs when either block is entered is a capture operation. For the data r
theCapture-DR state is used to capture (or parallel load) the data into the selected serial data path. In the Instru
register, theCapture-IR state is used to capture status information into the Instruction register.

From theCapture states, the TAP transitions to either theShift or Exit1 states. Normally theShift state follows the
Capturestate so that test data or status information can be shifted out for inspection and new data shifted in. Fol
theShiftstate, the TAP either returns to theRun-Test/Idlestate via theExit1andUpdatestates or enters thePausestate
via Exit1. The reason for entering thePause state is to temporarily suspend the shifting of data through either the D
or Instruction Register while a required operation, such as refilling a host memory buffer, is performed. From the
state shifting can resume by re-entering theShiftstate via theExit2state or terminated by entering theRun-Test/Idlestate
via theExit2 andUpdate states.

Upon entering the data or Instruction register scan blocks, shadow latches in the selected scan path are forced
their present state during the Capture and Shift operations. The data being shifted into the selected scan path is n
through the shadow latch until the TAP enters theUpdate-DR or Update-IR state. TheUpdate state causes the shadow
latches to update (or parallel load) with the new data that has been shifted into the selected scan path.

TRST_N I

Test Reset Input (Optional pin)

TheTRST_N pin is an active-low signal for asynchronous reset of the
TAP controller and instruction in the TAP module, independent of the
processor logic. The processor is not reset by the assertion ofTRST_N.

The core signal for this is calledEJ_TRST_N

This signal is optional, but power-on reset must apply a low pulse on this
is signal at power-on and then leave it high, in case the signal is not
available as a pin on the chip. If available on the chip, then it must be low
on the board when the EJTAG debug features are unused by the probe.

Table 9-19 EJTAG Interface Pins (Continued)

Pin Type Description
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 143

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 9 EJTAG Debug Support

change

evious

is

evious
Figure 9-5 TAP Controller State Diagram

9.3.2.1 Test-Logic-Reset State

In theTest-Logic-Reset state the boundary scan test logic is disabled. The test logic enters theTest-Logic-Reset state
when theTMS input is held HIGH for at least five rising edges ofTCK. The BYPASS instruction is forced into the
instruction register output latches during this state. The controller remains in theTest-Logic-Resetstate as long asTMS
is HIGH.

9.3.2.2 Run-Test/Idle State

The controller enters theRun-Test/Idlestate between scan operations. The controller remains in this state as long asTMS
is held LOW. The instruction register and all test data registers retain their previous state. The instruction cannot
when the TAP controller is in this state.

WhenTMS is sampled HIGH at the rising edge ofTCK, the controller transitions to theSelect_DR state.

9.3.2.3 Select_DR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their pr
state. IfTMSis sampled LOW at the rising edge ofTCK, the controller transitions to theCapture_DRstate. A HIGH on
TMScauses the controller to transition to theSelect_IRstate. The instruction cannot change while the TAP controller
in this state.

9.3.2.4 Select_IR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their pr
state. IfTMSis sampled LOW at the rising edge ofTCK, the controller transitions to theCapture_IRstate. A HIGH on
TMS causes the controller to transition to theTest-Reset-Logic state. The instruction cannot change while the TAP
controller is in this state.

Shift_IR

Select_IR_Scan

Capture_IR

Exit1_IR

Pause_IR

Exit2_IR

Update_IR

1

0

0

0

0

0

0

1

1

1

1

1

1

1

0

Shift_DR

Select_DR_Scan

Capture_DR

Exit1_DR

Pause_DR

Exit2_DR

Update_DR

0

0

0

0

0

0

1

1

1

1

1

1

1

0

Test-Logic-Reset

Run-Test/Idle

0

1

0

144 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

9.3 Test Access Port (TAP)

the value

e

evious

ion

serial

e.

evious

f

er
revious

te.
9.3.2.5 Capture_DR State

In this state the boundary scan register captures value of the register addressed by the Instruction register, and
is then shifted out in theShift_DR. If TMS is sampled LOW at the rising edge ofTCK, the controller transitions to the
Shift_DRstate. A HIGH onTMScauses the controller to transition to theExit1_DRstate. The instruction cannot change
while the TAP controller is in this state.

9.3.2.6 Shift_DR State

In this state the test data register connected betweenTDI andTDO as a result of the current instruction shifts data on
stage toward its serial output on the rising edge ofTCK. If TMSis sampled LOW at the rising edge ofTCK, the controller
remains in theShift_DRstate. A HIGH onTMScauses the controller to transition to theExit1_DRstate. The instruction
cannot change while the TAP controller is in this state.

9.3.2.7 Exit1_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their pr
state. IfTMS is sampled LOW at the rising edge ofTCK, the controller transitions to thePause_DR state. A HIGH on
TMS causes the controller to transition to theUpdate_DR state which terminates the scanning process. The instruct
cannot change while the TAP controller is in this state.

9.3.2.8 Pause_DR State

ThePause_DRstate allows the controller to temporarily halt the shifting of data through the test data register in the
path betweenTDI andTDO. All test data registers selected by the current instruction retain their previous state. IfTMS
is sampled LOW at the rising edge ofTCK, the controller remains in thePause_DR state. A HIGH onTMS causes the
controller to transition to theExit2_DR state. The instruction cannot change while the TAP controller is in this stat

9.3.2.9 Exit2_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their pr
state. IfTMSis sampled LOW at the rising edge ofTCK, the controller transitions to theShift_DRstate to allow another
serial shift of data. A HIGH onTMS causes the controller to transition to theUpdate_DR state which terminates the
scanning process. The instruction cannot change while the TAP controller is in this state.

9.3.2.10 Update_DR State

When the TAP controller is in this state the value shifted in during theShift_DR state takes effect at the rising edge o
theTCK for the register indicated by the Instruction register.

If TMSis sampled LOW at the rising edge ofTCK, the controller transitions to theRun-Test/Idlestate. A HIGH onTMS
causes the controller to transition to theSelect_DR_Scanstate. The instruction cannot change while the TAP controll
is in this state and all shift register stages in the test data registers selected by the current instruction retain their p
state.

9.3.2.11 Capture_IR State

In this state the shift register contained in the Instruction register loads a fixed pattern (000012) on the rising edge of
TCK. The data registers selected by the current instruction retain their previous state.

If TMSis sampled LOW at the rising edge ofTCK, the controller transitions to theShift_IRstate. A HIGH onTMScauses
the controller to transition to theExit1_IRstate. The instruction cannot change while the TAP controller is in this sta
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 145

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 9 EJTAG Debug Support

ut

r is in

 the

on

en
9.3.2.12 Shift_IR State

In this state the instruction register is connected betweenTDI andTDOand shifts data one stage toward its serial outp
on the rising edge ofTCK. If TMSis sampled LOW at the rising edge ofTCK, the controller remains in theShift_IRstate.
A HIGH onTMS causes the controller to transition to theExit1_IR state.

9.3.2.13 Exit1_IR State

This is a temporary controller state in which all registers retain their previous state. IfTMSis sampled LOW at the rising
edge ofTCK, the controller transitions to thePause_IRstate. A HIGH onTMScauses the controller to transition to the
Update_IR state which terminates the scanning process. The instruction cannot change while the TAP controlle
this state and the instruction register retains its previous state.

9.3.2.14 Pause_IR State

ThePause_IR state allows the controller to temporarily halt the shifting of data through the instruction register in
serial path betweenTDI andTDO. If TMS is sampled LOW at the rising edge ofTCK, the controller remains in the
Pause_IRstate. A HIGH onTMScauses the controller to transition to theExit2_IRstate. The instruction cannot change
while the TAP controller is in this state.

9.3.2.15 Exit2_IR State

This is a temporary controller state in which the instruction register retains its previous state. IfTMS is sampled LOW
at the rising edge ofTCK, the controller transitions to theShift_IRstate to allow another serial shift of data. A HIGH on
TMS causes the controller to transition to theUpdate_IR state which terminates the scanning process. The instructi
cannot change while the TAP controller is in this state.

9.3.2.16 Update_IR State

The instruction shifted into the instruction register takes effect on the rising edge ofTCK.

If TMSis sampled LOW at the rising edge ofTCK, the controller transitions to theRun-Test/Idlestate. A HIGH onTMS
causes the controller to transition to theSelect_DR_Scan state.

9.3.3 Test Access Port (TAP) Instructions

The TAP Instruction register allows instructions to be serially input into the device when TAP controller is in theShift-IR
state. Instructions are decoded and define the serial test data register path that is used to shift data betweenTDI andTDO
during data register scanning.

The Instruction register is a 5-bit register. In the current EJTAG implementation only some instructions have be
decoded; the unused instructions are set default to the BYPASS instruction.

Table 9-20 Implemented EJTAG Instructions

Value Instruction Function

0x01 IDCODE Select Chip Identification data register

0x03 IMPCODE Select Implementation Register

0x08 ADDRESS Select Address register

0x09 DATA Select Data register
146 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

9.3 Test Access Port (TAP)

ister to
ssor
EEE

gister
ng
th the
scan

gister
any
9.3.3.1 BYPASS Instruction

The required BYPASS instruction allows the processor to remain in a functional mode and selects the Bypass reg
be connected betweenTDI andTDO. The BYPASS instruction allows serial data to be transferred through the proce
from TDI to TDO without affecting its operation. The bit code of this instruction is defined to be all ones by the I
1149.1 standard. Any unused instruction is defaulted to the BYPASS instruction.

9.3.3.2 IDCODE Instruction

The IDCODE instruction allows the processor in its functional mode and selects the Device Identification (ID) re
to be connected betweenTDI andTDO. The Device ID register is a 32-bit shift register containing information regardi
the IC manufacturer, device type, and version code. Accessing the Identification Register does not interfere wi
operation of the processor. Also, access to the Identification Register is immediately available, via a TAP data
operation, after power-up when the TAP has been reset with on-chip power-on or through the optionalTRST_N pin.

9.3.3.3 IMPCODE Instruction

This instruction selects the Implementation register for output, which is always 32 bits.

9.3.3.4 ADDRESS Instruction

This instruction is used to select the Address register to be connected betweenTDI andTDO. The EJTAG Probe shifts
32 bits through theTDI pin into the Address register and shifts out the captured address via theTDO pin.

9.3.3.5 DATA Instruction

This instruction is used to select the Data register to be connected betweenTDI andTDO. The EJTAG Probe shifts 32
bits ofTDI data into the Data register and shifts out the captured data via theTDO pin.

9.3.3.6 CONTROL Instruction

This instruction is used to select the EJTAG Control register to be connected betweenTDI andTDO. The EJTAG Probe
shifts 32 bits ofTDI data into the EJTAG Control register and shifts out the EJTAG Control register bits viaTDO.

9.3.3.7 ALL Instruction

This instruction is used to select the concatenation of the Address and Data register, and the EJTAG Control re
betweenTDI andTDO. It can be used in particular if switching instructions in the instruction register takes too m
TCK cycles. The first bit shifted out is bit 0.

0x0A CONTROL Select EJTAG Control register

0x0B ALL Select the Address, Data and EJTAG Control registers

0x0C EJTAGBOOT Set EjtagBrk, ProbEn and ProbTrap to 1 as reset value

0x0D NORMALBOOT Set EjtagBrk, ProbEn and ProbTrap to 0 as reset value

0x0E FASTDATA Selects the Data and Fastdata registers

0x1F BYPASS Bypass mode

Table 9-20 Implemented EJTAG Instructions

Value Instruction Function
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 147

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 9 EJTAG Debug Support

En and

ng any
code in

robEn

change

 TAP:

truction
Figure 9-6 Concatenation of the EJTAG Address, Data and Control Registers

9.3.3.8 EJTAGBOOT Instruction

When the EJTAGBOOT instruction is given and Update-IR state is left, then the reset value of the ProbTrap, Prob
EjtagBrk bits in the EJTAG Control register are set to 1 after hard or soft reset.

This EJTAGBOOT indication is effective until NORMALBOOT instruction is given,TRST_Nis asserted or rising edge
of TCK occurs when TAP controller is in Test-Logic-Reset state.

It is thereby possible to make the CPU go into debug mode just after hard or soft reset, without fetching or executi
instructions from the normal memory area. This can be used for download of code to a system which have no
ROM.

The Bypass register is selected when the EJTAGBOOT instruction is given.

9.3.3.9 NORMALBOOT Instruction

When the NORMALBOOT instruction is given and Update-IR state is left, then the reset value of the ProbTrap, P
and EjtagBrk bits in the EJTAG Control register are set to 0 after hard or soft reset.

The Bypass register is selected when the NORMALBOOT instruction is given.

9.3.3.10 FASTDATA Instruction

This selects the Data and the Fastdata registers at once, as shown inFigure 9-7. This TAP instruction was added to
version 3.5 of the core. In previous versions, this instruction would act as a bypass. This is also indicated by the
from EJTAG version 2.5 to 2.6 in theImplementation register.

Figure 9-7 TDI to TDO Path when in Shift-DR State and FASTDATA Instruction is Selected

9.4 EJTAG TAP Registers

The EJTAG TAP Module has one Instruction register and a number of data registers, all accessible through the

9.4.1 Instruction Register

The Instruction register is accessed when the TAP receives an Instruction register scan protocol. During an Ins
register scan operation the TAP controller selects the output of the Instruction register to drive theTDO pin. The shift
register consists of a series of bits arranged to form a single scan path betweenTDI andTDO. During an Instruction

Address 0

Data 0

EJTAG Control 0 TDO

TDI

TDI Data TDOFastdata0
148 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

9.4 EJTAG TAP Registers

ion. A

g a data
ol signals
put

bit scan
olved
isfy the

sion,

f the
ruction.
register scan operations, the TAP controls the register to capture status information and shift data fromTDI toTDO. Both
the capture and shift operations occur on the rising edge ofTCK. However, the data shifted out from theTDOoccurs on
the falling edge ofTCK. In the Test-Logic-Reset andCapture-IR state, the instruction shift register is set to 000012, as
for IDCODE instruction. This forces the device into the functional mode and selects the Device ID register. The
Instruction register is 5 bits wide. The instruction shifted in takes effect for the following data register scan operat
list of the implemented instructions are listed inTable 9-20 on page 146.

9.4.2 Data Registers Overview

The EJTAG uses several data registers, which are arranged in parallel from the primaryTDI input to the primaryTDO
output. The Instruction register supplies the address that allows one of the data registers to be accessed durin
register scan operation. During a data register scan operation, the addressed scan register receives TAP contr
to capture the register and shift data fromTDI to TDO. During a data register scan operation, the TAP selects the out
of the data register to drive theTDO pin. The register is updated in theUpdate-DR state with respect to write bits.

This description applies in general to the following data registers:

• Bypass Register

• Device Identification Register

• Implementation Register

• EJTAG Control Register (ECR)

• Processor Access Address Register

• Processor Access Data Register

• FastData Register

9.4.2.1 Bypass Register

TheBypass register consists of a single scan register bit. When selected, the Bypass register provides a single
path betweenTDI andTDO. The Bypass register allows abbreviating the scan path through devices that are not inv
in the test. The Bypass register is selected when the Instruction register is loaded with a pattern of all ones to sat
IEEE 1149.1 Bypass instruction requirement.

9.4.2.2 Device Identification (ID) Register

TheDevice Identificationregister is defined by IEEE 1149.1, to identify the device's manufacturer, part number, revi
and other device-specific information.Table 9-21 shows the bit assignments defined for the read-only Device
Identification Register, and inputs to the core determine the value of these bits. These bits can be scanned out oID
register after being selected. The register is selected when the Instruction register is loaded with the IDCODE inst

Device Identification Register Format
31 28 27 12 11 1 0

Version PartNumber ManufID R
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 149

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 9 EJTAG Debug Support

lue are
truction.
9.4.2.3 Implementation Register

This 32-bit read-only register is used to identify the features of the EJTAG implementation. Some of the reset va
set by inputs to the core.The register is selected when the Instruction register is loaded with the IMPCODE ins

Implementation Register Format

Table 9-21 Device Identification Register

Fields Description Read/
Write

Reset State

Name Bit(s)

Version 31:28

Version (4 bits)

This field identifies the version number of the
processor derivative.

 R EJ_Version[3:0]

PartNumber 27:12

Part Number (16 bits)

This field identifies the part number of the processor
derivative.

 R EJ_PartNumber[15:0]

ManufID 11:1

Manufacturer Identity (11 bits)

Accordingly to IEEE 1149.1-1990, the manufacturer
identity code shall be a compressed form of the
JEDEC Publications 106-A.

 R EJ_ManufID[10:0]

R 0 reserved R 1

31 29 28 25 24 23 21 20 15 14 13 0

EJTAGver reserved DINTsup ASIDsize reserved NoDMA reserved

Table 9-22Implementation Register Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

EJTAGver 31:29

EJTAG Version

1: Version 2.5 (core revisions before 3.5)

2: Version 2.6 (core revisions 3.5 and later)

R Preset

reserved 28:25 reserved R 0

DINTsup 24

DINT Signal Supported from Probe

This bit indicates if the DINT signal from the probe is
supported:

0: DINT signal from the probe is not supported
1: Probe can use DINT signal to make debug interrupt.

R EJ_DINTsup

ASIDsize 23:21

Size of ASID field in implementation:

0: No ASID in implementation (4Km/4Kp cores)
1: 6-bit ASID
2: 8-bit ASID (4Kc core)
3: Reserved

R

4Kc core - 2

4Km/4Kp
cores - 0

reserved 20:15 reserved R 0

NoDMA 14 No EJTAG DMA Support R 1
150 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

9.4 EJTAG TAP Registers

he
ifting

r 0

AP
still
et
9.4.2.4 EJTAG Control Register

This 32-bit register controls the various operations of the TAP modules. This register is selected by shifting in t
CONTROL instruction. Bits in the EJTAG Control register can be set/cleared by shifting in data; status is read by sh
out the contents of this register. This EJTAG Control register can only be accessed by the TAP interface.

The EJTAG Control register is not updated in theUpdate-DR state unless the Reset occurred (Rocc), bit 31, is eithe
or written to 0. This is in order to ensure prober handling of processor accesses.

The value used for reset indicated in the table below takes effect on both hard and soft CPU reset, but no on T
controller reset by e.g.TRST_N. TCKclock is not required when the hard or soft CPU reset occurs, but the bits are
updated to the reset value when theTCKapplies. The first 5TCKclocks after hard or soft CPU reset may result in res
of the bits, due to synchronization between clock domains.

EJTAG Control Register Format

reserved 13:0 reserved R 0

31 30 29 28 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 2 0

Rocc Psz Res Doze Halt PerRst PRnW PrAcc Res PrRst ProbEn ProbTrap Res EjtagBrk Res DM Res

Table 9-23EJTAG Control Register Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)

Rocc 31

Reset Occurred

The bit indicates if hard or soft reset has occurred:
0: No reset occurred since bit last cleared.
1: Reset occurred since bit last cleared.

The Rocc bit will keep the 1 value as long as hard or soft
reset is applied.

This bit must be cleared by the probe, to acknowledge
that the incident was detected.

The EJTAG Control register is not updated in the
Update-DRstate unless Rocc is 0, or written to 0. This is
in order to ensure prober handling of processor access.

R/W 1

Table 9-22Implementation Register Descriptions

Fields Description Read/
Write

Reset State

Name Bit(s)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 151

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 9 EJTAG Debug Support
Psz[1:0] 30:29

Processor Access Transfer Size

These bits are used in combination with the lower two
address bits of the Address register to determine the size
of a processor access transaction. The bits are only valid
when processor access is pending.

Note: LE=little endian, BE=big endian, the byte# refers
to the byte number in a 32-bit register, where byte 3 =
bits 31:24; byte 2 = bits 23:16; byte 1 = bits 15:8; byte
0=bits 7:0, independently of the endianess.

R Undefined

Res 28:23 reserved R 0

Doze 22

Doze state

The Doze bit indicates any kind of low power mode. The
value is sampled in the Capture-DR state of the TAP
controller:
0: CPU not in low power mode.
1: CPU is in low power mode

Doze includes the Reduced Power (RP) and WAIT
power-reduction modes.

R 0

Halt 21

Halt state

The Halt bit indicates if the internal system bus clock is
running or stopped. The value is sampled in the
Capture-DR state of the TAP controller:

0: Internal system clock is running
1: Internal system clock is stopped

R 0

Table 9-23EJTAG Control Register Descriptions (Continued)

Fields Description Read/
Write

Reset State

Name Bit(s)

PAA[1:0] Psz[1:0] Transfer Size

00 00 Byte (LE, byte 0; BE, byte 3)

01 00 Byte (LE, byte 1; BE, byte 2)

10 00 Byte (LE, byte 2; BE, byte 1)

11 00 Byte (LE, byte 3; BE, byte 0)

00 01 Halfword (LE, bytes 1:0; BE, bytes 3:2)

10 01 Halfword (LE, bytes 3:2; BE, bytes 1:0)

00 10 Word (LE, BE; bytes 3, 2, 1, 0)

00 11 Triple (LE, bytes 2, 1, 0; BE, bytes 3, 2,1)

01 11 Triple (LE, bytes 3, 2, 1; BE, bytes 2, 1, 0)

All others Reserved
152 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

9.4 EJTAG TAP Registers
PerRst 20

Peripheral Reset

When the bit is set to 1, it is only guaranteed that the
peripheral reset has occurred in the system when the read
value of this bit is also 1. This is to ensure that the setting
from theTCKclock domain gets effect in the CPU clock
domain, and in peripherals.

When the bit is written to 0, then the bit must also be read
as 0 before it is guaranteed that the indication is cleared
in the CPU clock domain also.

This bit controls theEJ_PerRst signal on the core.

R/W 0

PRnW 19

Processor Access Read and Write

This bit indicates if the pending processor access is for a
read or write transaction, and the bit is only valid while
PrAcc is set:
0: Read transaction
1: Write transaction

R Undefined

PrAcc 18

Processor Access (PA)

Read value of this bit indicates if a Processor Access
(PA) to the EJTAG memory is pending:
0: No pending processor access
1: Pending processor access

The probe’s software must clear this bit to 0 to indicate
the end of the PA. Write of 1 is ignored.

A pending PA is cleared when Rocc is set, but another PA
may occur just after the reset if a debug exception occurs.

Finishing a PA is not accepted while the Rocc bit is set.
This is to avoid that a PA occurring after the reset is
finished due to indication of a PA that occurred before
the reset.

R/W0 0

Res 17 reserved R 0

PrRst 16

Processor Reset (Implementation dependent behavior)

When the bit is set to 1, then it is only guaranteed that this
setting has taken effect in the system when the read value
of this bit is also 1. This is to ensure that the setting from
theTCK clock domain gets effect in the CPU clock
domain, and in peripherals.

When the bit is written to 0, then the bit must also be read
as 0 before it is guaranteed that the indication is cleared
in the CPU clock domain also.

This bit controls theEJ_PrRstsignal. If the signal is used
in the system, then it must be ensured that both the
processor and all devices required for a reset are properly
reset. Otherwise the system may fail or hang. The bit
resets itself, since the EJTAG Control register is reset by
hard or soft reset.

R/W 0

Table 9-23EJTAG Control Register Descriptions (Continued)

Fields Description Read/
Write

Reset State

Name Bit(s)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 153

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 9 EJTAG Debug Support
ProbEn 15

Probe Enable

This bit indicates to the CPU if the EJTAG memory is
handled by the probe so processor accesses are
answered:
0: The probe does not handle EJTAG memory
transactions
1: The probe does handle EJTAG memory transactions

It is an error by the software controlling the probe if it
sets the ProbTrap to 1 but the ProbEn to 0. The operation
of the processor is UNDEFINED in this case.

The ProbEn bit is reflected as a read-only bit in the
ProbEn bit, bit 0, in the Debug Control Register (DCR).

The read value indicates the effective value in the DCR,
due to synchronization issues betweenTCK and CPU
clock domains. However, it is ensured that change of the
ProbEn prior to setting the EjtagBrk bit will have effect
for the debug handler executed due to the debug
exception.

The reset value of the bit depends on whether the
EJTAGBOOT indication is given or not:
No EJTAGBOOT indication given: 0
EJTAGBOOT indication given: 1

R/W

0 or 1

from

EJTAGBOOT

ProbTrap 14

Probe Trap

This bit controls the location of the debug exception
vector:
0: In normal memory 0xBFC0.0480
1: In EJTAG memory at 0xFF20.0200 in dmseg

Valid setting of the ProbTrap bit depends on the setting
of the ProbEn bit, see comment under ProbEn bit.

The ProbTrap should not be set to 1, for debug exception
vector in EJTAG memory, unless the ProbEn bit is also
set to 1 to indicate that the EJTAG memory may be
accessed.

The read value indicates the effective value to the CPU,
due to synchronization issues betweenTCK and CPU
clock domains. However, it is ensured that change of the
ProbTrap prior to setting the EjtagBrk bit will have effect
for the EjtagBrk.

The reset value of the bit depends on whether the
EJTAGBOOT indication is given or not:
No EJTAGBOOT indication given: 0
EJTAGBOOT indication given: 1

R/W

0 or 1

from

EJTAGBOOT

Res 13 reserved R 0

Table 9-23EJTAG Control Register Descriptions (Continued)

Fields Description Read/
Write

Reset State

Name Bit(s)
154 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

9.4 EJTAG TAP Registers

g, and
register

th of

rom this
ocessor
e when
9.4.3 Processor Access Address Register

The Processor Access Address (PAA) register is used to provide the address of the processor access in the dmse
the register is only valid when a processor access is pending. The length of the Address register is 32 bits, and this
is selected by shifting in the ADDRESS instruction.

9.4.3.1 Processor Access Data Register

The Processor Access Data (PAD) register is used to provide data value to and from a processor access. The leng
the Data register is 32 bits, and this register is selected by shifting in the DATA instruction.

The register has the written value for a processor access write due to a CPU store to the dmseg, and the output f
register is only valid when a processor access write is pending. The register is used to provide the data value for pr
access read due to a CPU load or fetch from the dmseg, and the register should only be updated with a new valu
a processor access write is pending.

ThePAD register is 32 bits wide. Data alignment is not used for this register, so the value in thePAD register matches
data on the internal bus. The undefined bytes for a PA write are undefined, and for aPAD read then 0 (zero) must be
shifted in for the unused bytes.

The organization of bytes in thePAD register depends on the endianess of the core, as shown inFigure 9-8. The endian
mode for debug/kernel mode is determined by the state of theEB_Endian input at power-up.

EjtagBrk 12

EJTAG Break

Setting this bit to 1 causes a debug exception to the
processor, unless the CPU was in debug mode or another
debug exception occurred.
When the debug exception occurs, the processor core
clock is restarted if the CPU was in low power mode.
This bit is cleared by hardware when the debug
exception is taken.

The reset value of the bit depends on whether the
EJTAGBOOT indication is given or not:
No EJTAGBOOT indication given: 0
EJTAGBOOT indication given: 1

R/W1

0 or 1

from

EJTAGBOOT

Res 11:4 reserved R 0

DM 3

Debug Mode

This bit indicates the debug or non-debug mode:
0: Processor is in non-debug mode
1: Processor is in debug mode

The bit is sampled in theCapture-DR state of the TAP
controller.

R 0

Res 2:0 reserved R 0

Table 9-23EJTAG Control Register Descriptions (Continued)

Fields Description Read/
Write

Reset State

Name Bit(s)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 155

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 9 EJTAG Debug Support

., a bit is
ther the
cess was

(on the
. A
ifies the
e Data +
Figure 9-8 Endian Formats for thePAD Register

The size of the transaction and thus the number of bytes available/required for thePADregister is determined by the Psz
field in theECR.

9.4.4 Fastdata Register (TAP Instruction FASTDATA)

The width of the Fastdata register is 1 bit. During a Fastdata access, the Fastdata register is written and read, i.e
shifted in and a bit is shifted out. During a Fastdata access, the Fastdata register value shifted in specifies whe
Fastdata access should be completed or not. The value shifted out is a flag that indicates whether the Fastdata ac
successful or not (if completion was requested).

Fastdata Register Format

The FASTDATA access is used for efficient block transfers between dmseg (on the probe) and target memory
processor). An “upload” is defined as a sequence of processor loads from target memory and stores to dmseg
“download” is a sequence of processor loads from dmseg and stores to target memory. The “Fastdata area” spec
legal range of dmseg addresses (0xFF20.0000 - 0xFF20.000F) that can be used for uploads and downloads. Th

0
SPrAcc

Table 9-24 Fastdata Register Field Description

Fields Description Read/
Write

Power-up
State

Name Bits

SPrAcc 0

Shifting in a zero value requests completion of the
Fastdata access. The PrAcc bit in the EJTAG Control
register is overwritten with zero when the access succeeds.
(The access succeeds if PrAcc is one and the operation
address is in the legal dmseg Fastdata area.) When
successful, a one is shifted out. Shifting out a zero
indicates a Fastdata access failure.

Shifting in a one does not complete the Fastdata access
and the PrAcc bit is unchanged. Shifting out a one
indicates that the access would have been successful if
allowed to complete and a zero indicates the access would
not have successfully completed.

R/W Undefined

A[n:0]=7 6 5 4

012A[n:0]=3

A[n:0]=4 5 6 7

321A[n:0]=0

0781516232431

0781516232431

LSB
bit

MSB

LSB
bit

MSB

A[n:2]=1

A[n:2]=0

A[n:2]=1

A[n:2]=0

Most significant byte is at lowest address.
Word is addressed by byte address of most significant byte.

BIG-ENDIAN

LITTLE-ENDIAN

Least significant byte is at lowest address.
Word is addressed by byte address of least significant byte.
156 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

9.5 Processor Accesses

a

rocessor
ccesses
 if the
loads will
a being

een the
rd.

he TAP
 the

rial way
g the
Fastdata registers (selected with the FASTDATA instruction) allow efficient completion of pending Fastdata are
accesses.

During Fastdata uploads and downloads, the processor will stall on accesses to the Fastdata area. The PrAcc (p
access pending bit) will be 1 indicating the probe is required to complete the access. Both upload and download a
are attempted by shifting in a zero SPrAcc value (to request access completion) and shifting out SPrAcc to see
attempt will be successful (i.e., there was an access pending and a legal Fastdata area address was used). Down
also shift in the data to be used to satisfy the load from dmseg’s Fastdata area, while uploads will shift out the dat
stored to dmseg’s Fastdata area.

As noted above, two conditions must be true for the Fastdata access to succeed. These are:

• PrAcc must be 1, i.e., there must be a pending processor access.

• The Fastdata operation must use a valid Fastdata area address in dmseg (0xFF20.0000 to 0xFF20.000F).

Table 9-25 shows the values of the PrAcc and SPrAcc bits and the results of a Fastdata access.
.

There is no restriction on the contents of the Data register. It is expected that the transfer size is negotiated betw
download/upload transfer code and the probe software. Note that the most efficient transfer size is a 32-bit wo

The Rocc bit of the Control register is not used for the FASTDATA operation.

9.5 Processor Accesses

The TAP modules support handling of fetch, load and store from the CPU through the dmseg segment, whereby t
module can operate like a is aslave unit connected to the on-chip bus. The core can then execute code taken from
EJTAG Probe and it can access data (via load or store) which is located on the EJTAG Probe. This occurs in a se
through the EJTAG interface: the core can thus execute instructions e.g. debug monitor code, without occupyin
user’s memory.

Table 9-25 Operation of the FASTDATA access

Probe
Operation

Address
Match
check

PrAcc in
the

Control
Register

LSB
(SPrAcc)
shifted in

Action in the
Data Register

PrAcc
changes to

LSB
shifted

out

Data shifted
out

Download
using
FASTDATA

Fails x x none unchanged 0 invalid

Passes

1 1 none unchanged 1 invalid

1 0 write data 0 (SPrAcc) 1
valid

(previous)
data

0 x none unchanged 0 invalid

Upload
using
FASTDATA

Fails x x none unchanged 0 invalid

Passes

1 1 none unchanged 1 invalid

1 0 read data 0 (SPrAcc) 1 valid data

0 x none unchanged 0 invalid
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 157

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 9 EJTAG Debug Support

he range
on the

ddress

xception:

rAcc
ble and

to the

on. This

. For this
ropriate

e store
s to be in

rAcc
ble and
Accessing the dmseg segment (EJTAG memory) can only occur when the processor accesses an address in t
from 0xFF20.0000 to 0xFF2F.FFFF, the ProbEn bit is set, and the processor is in debug mode (DM=1). In additi
LSNM bit in the CP0 Debug register controls transactions to/from the dmseg.

When a debug exception is taken, while the ProbTrap bit is set, the processor will start fetching instructions from a
0xFF20.0200.

A pending processor access can only finish if the probe writes 0 to PrAcc or by soft or hard reset.

9.5.1 Fetch/Load and Store from/to the EJTAG Probe through dmseg

1. The internal hardware latches the requested address into the PA Address register (in case of the Debug e
0xFF20_0200).

2. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)
PRnW = 0 (selects processor read operation)
Psz[1:0] = value depending on the transfer size

3. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the P
status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is availa
can be shifted out.

4. The EJTAG Probe checks the PRnW bit to determine the required access.

5. The EJTAG Probe selects the PA Address register and shifts out the requested address.

6. The EJTAG Probe selects the PA Data register and shifts in the instruction corresponding to this address.

7. The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate
processor that the instruction is available.

8. The instruction becomes available in the instruction register and the processor starts executing.

9. The processor increments the program counter and outputs an instruction read request for the next instructi
starts the whole sequence again.

Using the same protocol, the processor can also execute a load instruction to access the EJTAG Probe’s memory
to happen, the processor must execute a load instruction (e.g. a LW, LH, LB) with the target address in the app
range.

Almost the same protocol is used to execute a store instruction to the EJTAG Probe’s memory through dmseg. Th
address must be in the range: 0xFF20_0000 to 0xFF2F_FFFF, the ProbEn bit must be set and the processor ha
debug mode (DM=1). The sequence of actions is found below:

1. The internal hardware latches the requested address into the PA Address register

2. The internal hardware latches the data to be written into the PA Data register.

3. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)
PRnW = 1 (selects processor write operation)
Psz[1:0] = value depending on the transfer size

4. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the P
status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is availa
can be shifted out.

5. The EJTAG Probe checks the PRnW bit to determine the required access.

6. The EJTAG Probe selects the PA Address register and shifts out the requested address.
158 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

9.5 Processor Accesses

to the
7. The EJTAG Probe selects the PA Data register and shifts out the data to be written.

8. The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate
processor that the write access is finished.

9. The EJTAG Probe writes the data to the requested address in its memory.

10. The processor detects that PrAcc bit = 0, which means that it is ready to handle a new access.

The above examples imply that no reset occurs during the operations, and that Rocc is cleared.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 159

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 9 EJTAG Debug Support
160 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

ediate,

rmats

less
Chapter 10

Instruction Set Overview

This chapter provides a general overview on the three CPU instruction set formats of the MIPS architecture: Imm
Jump, and Register. Refer toChapter 11, “MIPS32 4K Processor Core Instructions,” on page 167for a complete listing
and description of instructions.

This chapter discusses the following topics:

• Section 10.1, "CPU Instruction Formats"

• Section 10.2, "Load and Store Instructions"

• Section 10.3, "Computational Instructions"

• Section 10.4, "Jump and Branch Instructions"

• Section 10.5, "Control Instructions"

• Section 10.6, "Coprocessor Instructions"

• Section 10.7, "Enhancements to the MIPS Architecture"

10.1 CPU Instruction Formats

Each CPU instruction consists of a single 32-bit word, aligned on a word boundary. There are three instruction fo
immediate (I-type), jump (J-type), and register (R-type)—as shown inFigure 10-1. The use of a small number of
instruction formats simplifies instruction decoding, allowing the compiler to synthesize more complicated (and
frequently used) operations and addressing modes from these three formats as needed.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 161

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 10 Instruction Set Overview

he only

ster,
of load

ode.

ddressed
n, the
Figure 10-1 Instruction Formats

10.2 Load and Store Instructions

Load and store are immediate (I-type) instructions that move data between memory and the general registers. T
addressing mode that load and store instructions directly support isbase register plus 16-bit signed immediate offset.

10.2.1 Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the instruction immediately following is called adelayed
load instruction. The instruction slot immediately following this delayed load instruction is referred to as theload delay
slot.

In the 4K cores, the instruction immediately following a load instruction can use the contents of the loaded regi
however, in such cases, hardware interlocks insert additional real cycles. Although not required, the scheduling
delay slots can be desirable, both for performance and R-Series processor compatibility.

10.2.2 Defining Access Types

Access type indicates the size of a core data item to be loaded or stored, set by the load or store instruction opc

Regardless of access type or byte ordering (endianness), the address given specifies the low-order byte in the a
field. For a big-endian configuration, the low-order byte is the most-significant byte; for a little-endian configuratio
low-order byte is the least-significant byte.

op 6-bit operation code

rs 5-bit source register specifier

rt 5-bit target (source/destination) register or branch
condition

immediate 16-bit immediate value, branch displacement or
address displacement

target 26-bit jump target address

rd 5-bit destination register specifier

sa 5-bit shift amount

funct 6-bit function field

I-Type (Immediate)

R-Type (Register)

J-Type (Jump)

immediate

015

rt

1620

op

2631

rs

2125

target

015

op

2631

rt

1620

op

2631

rs

2125

sa

610

rd

1115

funct

05

target

025

op

2631
162 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

10.3 Computational Instructions

dressed

ough
 is
The access type, together with the three low-order bits of the address, define the bytes accessed within the ad
word as shown inTable 10-1. Only the combinations shown inTable 10-1 are permissible; other combinations cause
address error exceptions.

10.3 Computational Instructions

Computational instructions can be either in register (R-type) format, in which both operands are registers, or in
immediate (I-type) format, in which one operand is a 16-bit immediate.

Computational instructions perform the following operations on register values:

– Arithmetic

– Logical

– Shift

– Multiply

– Divide

These operations fit in the following four categories of computational instructions:

– ALU Immediate instructions

– Three-operand Register-type Instructions

– Shift Instructions

– Multiply And Divide Instructions

10.3.1 Cycle Timing for Multiply and Divide Instructions

Any multiply instruction in the integer pipeline is transferred to the multiplier as remaining instructions continue thr
the pipeline; the product of the multiply instruction is saved in the HI and LO registers. If the multiply instruction

Table 10-1 Byte Access within a Word

Bytes Accessed

Low Order
Address Bits

Big Endia
(31---------------------0)

Little Endian
(31---------------------0)

Access Type 2 1 0 Byte Byte

Word 0 0 0 0 1 2 3 3 2 1 0

Triplebyte
0 0 0 0 1 2 2 1 0

0 0 1 1 2 3 3 2 1

Halfword
0 0 0 0 1 1 0

0 1 0 2 3 3 2

Byte

0 0 0 0 0

0 0 1 1 1

0 1 0 2 2

0 1 1 3 3
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 163

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 10 Instruction Set Overview

come

delay
n in

th of

d Link
eral

to the
followed by an MFHI or MFLO before the product is available, the pipeline interlocks until this product does be
available. Refer toChapter 2, “Pipeline,” for more information on instruction latency and repeat rates.

10.4 Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All jump and branch instructions occur with a
of one instruction: that is, the instruction immediately following the jump or branch (this is known as the instructio
thedelay slot) always executes while the target instruction is being fetched from storage.

10.4.1 Overview of Jump Instructions

Subroutine calls in high-level languages are usually implemented with Jump or Jump and Link instructions, bo
which are J-type instructions. In J-type format, the 26-bit target address shifts left 2 bits and combines with the
high-order 4 bits of the current program counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the Jump Register or Jump an
Register instructions. Both are R-type instructions that take the 32-bit byte address contained in one of the gen
purpose registers.

For more information about jump instructions, refer to the individual instructions inSection 11.5, "Instruction Set".

10.4.2 Overview of Branch Instructions

All branch instruction target addresses are computed by adding the address of the instruction in the delay slot
16-bitoffset (shifted left 2 bits and sign-extended to 32 bits). All branches occur with a delay of one instruction.

If a conditional branch likely is not taken, the instruction in the delay slot is nullified.

Branches, jumps, ERET, and DERET instructions should not be placed in the delay slot of a branch or jump.

10.5 Control Instructions

Control instructions allow the software to initiate traps; they are always R-type.

10.6 Coprocessor Instructions

CP0 instructions perform operations on the System Control Coprocessor registers to manipulate the memory
management and exception handling facilities of the processor. Refer to ChapterChapter 11, “MIPS32 4K Processor
Core Instructions,” on page 167 for a listing of CP0 instructions.

10.7 Enhancements to the MIPS Architecture

The core execution unit implements the MIPS32 architecture, which includes the following instructions.

• CLO – Count Leading Ones

• CLZ – Count Leading Zeros

• MADD – Multiply and Add Word
164 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

10.7 Enhancements to the MIPS Architecture

PR

PR

the
ult.

written

ord
ce

g value

alue
-bit

value

2-bit
 to
air. The
tances.
• MADDU – Multiply and Add Unsigned Word

• MSUB – Multiply and Subtract Word

• MSUBU – Multiply and Subtract Unsigned Word

• MUL – Multiply Word to Register

• SSNOP – Superscalar Inhibit NOP

10.7.1 CLO - Count Leading Ones

The CLO instruction counts the number of leading ones in a word. The 32-bit word in the GPRrs is scanned from
most-significant to least-significant bit. The number of leading ones is counted and the result is written to the Grd.
If all 32 bits are set in the GPRrs, the result written to the GPRrd is 32.

10.7.2 CLZ - Count Leading Zeros

The CLZ instruction counts the number of leading zeros in a word. The 32-bit word in the GPRrs is scanned from
most-significant to least-significant bit. The number of leading zeros is counted and the result is written to the Grd.
If all 32 bits are cleared in the GPRrs, the result written to the GPRrd is 32.

10.7.3 MADD - Multiply and Add Word

The MADD instruction multiplies two words and adds the result to the HI/LO register pair. The 32-bit word value in
GPRrs is multiplied by the 32-bit value in the GPRrt, treating both operands as signed values, to produce a 64-bit res
The product is added to the 64-bit concatenated values in the HI and LO register pair. The resulting value is then
back to the HI and LO registers. No arithmetic exception occurs under any circumstances.

10.7.4 MADDU - Multiply and Add Unsigned Word

The MADDU instruction multiplies two unsigned words and adds the result to the HI/LO register pair. The 32-bit w
value in the GPRrs is multiplied by the 32-bit value in the GPRrt, treating both operands as unsigned values, to produ
a 64-bit result. The product is added to the 64-bit concatenated values in the HI and LO register pair. The resultin
is then written back to the HI and LO registers. No arithmetic exception occurs under any conditions.

10.7.5 MSUB - Multiply and Subtract Word

The MSUB instruction multiplies two words and subtracts the result from the HI/LO register pair. The 32-bit word v
in the GPRrs is multiplied by the 32-bit value in the GPRrt, treating both operands as signed values, to produce a 64
result. The product is subtracted from the 64-bit concatenated values in the HI and LO register pair. The resulting
is then written back to the HI and LO registers. No arithmetic exception occurs under any circumstances.

10.7.6 MSUBU - Multiply and Subtract Unsigned Word

The MSUBU instruction multiplies two unsigned words and subtracts the result from the HI/LO register pair. The 3
word value in the GPRrs is multiplied by the 32-bit value in the GPRrt, treating both operands as unsigned values,
produce a 64-bit result. The product is subtracted from the 64-bit concatenated values in the HI and LO register p
resulting value is then written back to the HI and LO registers. No arithmetic exception occurs under any circums
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 165

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 10 Instruction Set Overview

he
10.7.7 MUL - Multiply Word

The MUL instruction multiplies two words and writes the result to a GPR. The 32-bit word value in the GPRrs is
multiplied by the 32-bit value in the GPRrt, treating both operands as signed values, to produce a 64-bit result. T
least-significant 32 bits of the product are written to the GPRrd. The contents of the HI and LO register pair are not
defined after the operation. No arithmetic exception occurs under any circumstances.

10.7.8 SSNOP- Superscalar Inhibit NOP

The MIPS32 4K processor cores treat this instruction as a regular NOP.
166 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

hich is
Chapter 11

MIPS32 4K Processor Core Instructions

This chapter provides a detailed guide to understanding the instruction set for the MIPS32 4K processor cores, w
a subset of the MIPS32 architecture. The chapter is divided into the following sections:

• Section 11.1, "Understanding the Instruction Fields" on page 167

• Section 11.2, "Operation Section Notation and Functions" on page 172

• Section 11.3, "Op and Function Subfield Notation" on page 177

• Section 11.4, "CPU Opcode Map" on page 177

• Section 11.5, "Instruction Set" on page 179

11.1 Understanding the Instruction Fields

Figure 11-1 shows an example instruction. Following the figure are descriptions of the fields listed below:

• Section 11.1.1, "Instruction Fields" on page 168

• Section 11.1.2, "Instruction Descriptive Name and Mnemonic" on page 169

• Section 11.1.3, "Format Field" on page 169

• Section 11.1.4, "Purpose Field" on page 169

• Section 11.1.5, "Description Field" on page 170

• Section 11.1.6, "Restrictions Field" on page 170

• Section 11.1.7, "Operation Field" on page 171

• Section 11.1.8, "Exceptions Field" on page 171

• Section 11.1.9, "Programming Notes and Implementation Notes Fields" on page 171
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 167

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

wing

f

Figure 11-1 Example Instruction Description

11.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The follo
rules are followed:

0

Example Instruction Name EXAMPLE

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 EXAMPLE

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Format: EXAMPLE rd, rs,rt MIPS32

Purpose: to execute an EXAMPE op

Description: rd ← rs exampleop rt

This section describes the operation of the instruction in text, tables, and
illustrations. It includes information that would be difficult to encode in the
Operation section.

Restrictions:
This section lists any restrictions for the instruction. This can include values of the
instruction encoding fields such as register specifiers, operand values, operand
formats, address alignment, instruction scheduling hazards, and type of memory
access for addressed locations.

Operation:
/* This section describes the operation of an instruction in a */
/* high-level pseudo-language. It is precise in ways that the */
/* Description section is not, but is also missing information */
/* that is hard to express in pseudocode.*/

temp ← GPR[rs] exampleop GPR[rt]
GPR[rd] ← temp

Exceptions:
A list of exceptions taken by the instruction

Programming Notes:
Information useful to programmers, but not necessary to describe the operation o
the instruction

Implementation Notes:
Like Programming Notes, except for processor implementors

Instruction mnemonic
and descriptive name

Instruction encoding
constant and variable
field names and values

Architecture level at
which instruction was
defined/redefined and
assembler format(s) for
each definition

Short description

Symbolic description

Full description of
instruction operation

Restrictions on
instruction and
operands

High-level language
description of instruction
operation

Exceptions that
instruction can cause

Notes for programmers

Notes for implementors
168 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.1 Understanding the Instruction Fields

ed are
ded
e
vious
xtended

The
at which
• The values of constant fields and theopcodenames foropcodefields are listed in uppercase (SPECIAL and ADD in
Figure 11-2).

• All variable fields are listed with the lowercase names used in the instruction description (rs, rt andrd in Figure
11-2).

• Fields that contain zeros but are not named are unused fields that are required to be zero (bits 10:6 inFigure 11-2) If
such fields are set to non-zero values, the operation of the processor isUNPREDICTABLE .

Figure 11-2 Example of Instruction Fields

11.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown inFigure
11-3.

Figure 11-3 Example of Instruction Descriptive and Mnemonic Name

11.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defin
given in theFormatfield. If the instruction definition was later extended, the architecture levels at which it was exten
and the assembler formats for the extended definition are shown in their order of extension (for an example, se
C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in pre
levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the e
architecture.

Format: ADD rd, rs, rt MIPS32

Figure 11-4 Example of Instruction Format

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters.
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectural level
the instruction was first defined, for example “MIPS32” is shown at the right side of the page.

11.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

ADD

100000

6 5 5 5 5 6

Add Word ADD
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 169

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

n.

 and

ription

one

ards for

e

Purpose:

To add 32-bit integers. If an overflow occurs, then trap.

Figure 11-5 Example of Instruction Purpose

11.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the right of theDescription
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operatio

Description: rd ← rs + rt

The 32-bit word value in GPRrt is added to the 32-bit value in GPRrs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified
an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is placed into GPRrd.

Figure 11-6 Example of Instruction Description

The body of the section is a description of the operation of the instruction in text, tables, and figures. This desc
complements the high-level language description in theOperation section.

This section uses acronyms for register descriptions. “GPRrt” is CPU general-purpose register specified by the
instruction fieldrt.

11.1.6 Restrictions Field

TheRestrictionsfield documents any possible restrictions that may affect the instruction. Most restrictions fall into
of the following six categories:

• valid values for instruction fields (for example, see floating-point ADD.fmt)

• alignment requirements for memory addresses (for example, see LW)

• valid values of operands (for example, see DADD)

• valid operand formats (for example, see floating-point ADD.fmt)

• order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline haz
which some processors do not have hardware interlocks (for example, see MUL).

• valid memory access types (for example, see LL/SC)

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Figure 11-7 Example of Instruction Restrictions
170 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.1 Understanding the Instruction Fields

tion of a
ship

ot
11.1.7 Operation Field

TheOperation field describes the operation of the instruction as pseudocode in a high-level language notation
resembling Pascal. This formal description complements theDescription section; it is not complete in itself because
many of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Operation:

temp ← (GPR[rs] 31||GPR[rs] 31..0) + (GPR[rt] 31||GPR[rt] 31..0)
if temp 32 ≠ temp 31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp
endif

Figure 11-8 Sample Instruction Operation

SeeSection 11.2, "Operation Section Notation and Functions" on page 172for more information on the formal notation
used here.

11.1.8 Exceptions Field

TheExceptionsfield lists the exceptions that can be caused byOperationof the instruction. It omits exceptions that can
be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by
asynchronous external events such as an Interrupt. Although a Bus Error exception may be caused by the opera
load or store instruction, this section does not list Bus Error for load and store instructions because the relation
between load and store instructions and external error indications, like Bus Error, are dependent upon the
implementation.

Exceptions:

Integer Overflow

Figure 11-9 Sample Instruction Exception

An instruction may cause implementation-dependent exceptions that are not present in theExceptions section.

11.1.9 Programming Notes and Implementation Notes Fields

TheNotes sections contain material that is useful for programmers and implementors, respectively, but that is n
necessary to describe the instruction and does not belong in the description sections.

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

Figure 11-10 Sample Instruction Programming Notes
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 171

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

ls

ed

ary
 is
11.2 Operation Section Notation and Functions

In an instruction description, theOperationsection uses a high-level language notation to describe the operation
performed by each instruction. The contents of theOperationsection are described here, including the special symbo
and functions that are used.

This section presents information about the following topics:

• Section 11.2.1, "Instruction Execution Ordering" on page 172

• Section 11.2.2, "Special Symbols in Pseudocode Notation" on page 172

• Section 11.2.3, "Pseudocode Functions" on page 173

11.2.1 Instruction Execution Ordering

Each of the high-level language statements in theOperations section are executed sequentially (except as constrain
by conditional and loop constructs).

11.2.2 Special Symbols in Pseudocode Notation

Special symbols used in the pseudocode notation are listed inTable 11-1.

Table 11-1 Symbols Used in Instruction Operation Statements

Symbol Meaning

← Assignment

=, ≠ Tests for equality and inequality

|| Bit string concatenation

xy A y-bit string formed byy copies of the single-bit valuex

b#n
A constant valuen in baseb. For instance 10#100 represents the decimal value 100, 2#100 represents the bin
value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" prefix
omitted, the default base is 10.

xy..z
Selection of bitsy throughzof bit stringx. Little-endian bit notation (rightmost bit is 0) is used. Ify is less than
z, this expression is an empty (zero length) bit string.

+, − 2’s complement or floating-point arithmetic: addition, subtraction

∗, × 2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

/ Floating-point division

< 2’s complement less-than comparison

> 2’s complement greater-than comparison

≤ 2’s complement less-than or equal comparison

≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR
172 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.2 Operation Section Notation and Functions

ode more
include

, and

turn

e

me

led

h an
n

t
icular

n
g a

tion)

sical
11.2.3 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudoc
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and
the following:

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose registerx. The content ofGPR[0] is always zero.

CPR[z,x,s] Coprocessor unitz, general registerx, select s

CCR[z,x] Coprocessor unitz, control registerx

Xlat[x] Translation of the MIPS16 GPR numberx into the corresponding 32-bit GPR number

BigEndianMem
Endian mode as configured at chip reset (0→Little-Endian, 1→ Big-Endian). Specifies the endianness of the
memory interface (see LoadMemory and StoreMemory inSection 11.2.3.1, "Load Memory and Store Memory
Functions" on page 174), and the endianness of Kernel and Supervisor mode execution.

BigEndianCPU
The endianness for load and store instructions (0→ Little-Endian, 1→ Big-Endian). In User mode, this
endianness may be switched by setting theREbit in theStatusregister. Thus, BigEndianCPU may be computed
as (BigEndianMem XOR ReverseEndian).

ReverseEndian
Signal to reverse the endianness of load and store instructions. This feature is available in User mode only
is implemented by setting theREbit of theStatusregister. Thus, ReverseEndian may be computed as (SRREand
User mode).

LLbit

Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write.LLbit is set
when a linked load occurs; it is tested and cleared by the conditional store. It is cleared, during other CPU
operation, when a store to the location would no longer be atomic. In particular, it is cleared by exception re
instructions.

I:,
I+n:,
I-n:

This occurs as a prefix toOperation description lines and functions as a label. It indicates the instruction tim
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a ti
label ofI . Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections labe
with the instruction time, relative to the current instructionI , in which the effect of that pseudocode appears to
occur. For example, an instruction may have a result that is not available until after the next instruction. Suc
instruction has the portion of the instruction operation description that writes the result register in a sectio
labeledI+1.

The effect of pseudocode statements for the current instruction labelledI+1 appears to occur “at the same time”
as the effect of pseudocode statements labeledI for the following instruction. Within one pseudocode sequence,
the effects of the statements take place in order. However, between sequences of statements for differen
instructions that occur “at the same time,” there is no defined order. Programs must not depend on a part
order of evaluation between such sections.

PC

TheProgram Countervalue. During the instruction time of an instruction, this is the address of the instructio
word. The address of the instruction that occurs during the next instruction time is determined by assignin
value toPC during an instruction time. If no value is assigned toPC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16 instruc
or 4 before the next instruction time. A taken branch assigns the target address to thePCduring the instruction
time of the instruction in the branch delay slot.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phy
address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

Table 11-1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 173

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

st byte
dian

irtual
e
t
irectly

gorithm,

s
.
Km or
B or the

type
mory

ntire
• Section 11.2.3.1, "Load Memory and Store Memory Functions" on page 174

• Section 11.2.3.2, "Miscellaneous Functions" on page 176

11.2.3.1 Load Memory and Store Memory Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smalle
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for a little-en
ordering this is the least-significant byte.

In theOperation pseudocode for load and store operations, the following functions summarize the handling of v
addresses and the access of physical memory. The size of the data item to be loaded or stored is passed in th
AccessLength field. The valid constant names and values are shown inTable 11-2. The bytes within the addressed uni
of memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined d
from theAccessLength and the two or three low-order bits of the address.

AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cache coherence al
describing the mechanism used to resolve the memory reference.

Given the virtual addressvAddr, and whether the reference is to Instructions or Data (IorD), find the corresponding
physical address (pAddr) and the cache coherence algorithm (CCA) used to resolve the reference. If the virtual addres
is in one of the unmapped address spaces, the physical address andCCAare determined directly by the virtual address
If the virtual address is in one of the mapped address spaces then the TLB (4Kc core) or fixed mapping MMU (4
4Kp core) determines the physical address and access type; if the required translation is not present in the TL
desired access is not permitted, the function fails and an exception is taken.

(pAddr, CCA) ← AddressTranslation (vAddr, IorD, LorS)

/* pAddr :physical address */
/* CCA:Cache Coherence Algorithm, the method used to access caches*/
/* and memory and resolve the reference */

/* vAddr :virtual address */
/* IorD : Indicates whether access is for INSTRUCTION or DATA */
/* LorS : Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

Figure 11-11 AddressTranslation Pseudocode Function

LoadMemory

The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cache Coherence Algorithm (CCA) and the access
(IorD) to find the contents ofAccessLengthmemory bytes, starting at physical locationpAddr. The data is returned in a
fixed-width naturally aligned memory element (MemElem). The low-order two (or three) bits of the address and the
AccessLengthindicate which of the bytes withinMemElemneed to be passed to the processor. If the memory access
of the reference isuncached, only the referenced bytes are read from memory and marked as valid within the me
element. If the access type iscachedbut the data is not present in cache, an implementation-specificsizeandalignment
block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, this block is the e
memory element.
174 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.2 Operation Section Notation and Functions

ry)

t are

d.

crease
MemElem ← LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem:Data is returned in a fixed width with a */
/* natural alignment. The width is the same size */
/* as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit */
/* boundary, respectively. */
/* CCA: Cache Coherence Algorithm, the method used to */
/* access caches and memory and resolve the reference */

/* AccessLength : Length, in bytes, of access */
/* pAddr : physical address */
/* vAddr : virtual address */
/* IorD : Indicates whether access is for Instructions or Data */

endfunction LoadMemory

Figure 11-12 LoadMemory Pseudocode Function

StoreMemory

The StoreMemory function stores a value to memory.

The specified data is stored into the physical locationpAddrusing the memory hierarchy (data caches and main memo
as specified by the Cache Coherence Algorithm (CCA). TheMemElem contains the data for an aligned, fixed-width
memory element (a word for 32-bit processors, a doubleword for 64-bit processors), though only the bytes tha
actually stored to memory need be valid. The low-order two (or three) bits ofpAddrand theAccessLengthfield indicate
which of the bytes within theMemElem data should be stored; only these bytes in memory will actually be change

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

/* CCA: Cache Coherence Algorithm, the method used to access */
/* caches and memory and resolve the reference. */
/* AccessLength : Length, in bytes, of access */
/* MemElem: Data in the width and alignment of a memory element. */
/* The width is the same size as the CPU general */
/* purpose register, either 4 or 8 bytes, aligned on */
/* a 4- or 8-byte boundary. For a partial-memory-element */
/* store, only the bytes that will be*/
/* stored must be valid.*/
/* pAddr : physical address */
/* vAddr : virtual address */

endfunction StoreMemory

Figure 11-13 StoreMemory Pseudocode Function

Prefetch

The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may in
performance but must not change the meaning of the program or alter architecturally visible state.

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA: Cache Coherence Algorithm, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr : physical address */
/* vAddr : virtual address */
/* DATA: Indicates that access is for DATA */
/* hint : hint that indicates the possible use of the data */
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 175

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

a return
endfunction Prefetch

Figure 11-14 Prefetch Pseudocode Function

Table 11-2 lists the data access lengths and their labels for loads and stores.

11.2.3.2 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

SyncOperation

The SyncOperation function orders loads and stores to synchronize shared memory.

This action makes the effects of the synchronizable loads and stores indicated bystype occur in the same order for all
processors.

SyncOperation(stype)

/* stype : Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

Figure 11-15 SyncOperation Pseudocode Function

SignalException

The SignalException function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees
from this function call.

SignalException(Exception, argument)

/* Exception : The exception condition that exists. */
/* argument: An exception-dependent argument, if any */

endfunction SignalException

Figure 11-16 SignalException Pseudocode Function

NullifyCurrentInstruction

The NullifyCurrentInstruction function nullifies the current instruction.

Table 11-2 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning

WORD 3 4 bytes (32 bits)

TRIPLEBYTE 2 3 bytes (24 bits)

HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)
176 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.3 Op and Function Subfield Notation

 its

TRUE
L,

is
,
tains

tion.

s

The instruction is aborted. For branch-likely instructions, nullification kills the instruction in the delay slot during
execution.

NullifyCurrentInstruction()

endfunction NullifyCurrentInstruction

Figure 11-17 NullifyCurrentInstruction PseudoCode Function

CoprocessorOperation

The CoprocessorOperation function performs the specified Coprocessor operation.

CoprocessorOperation (z, cop_fun)

/* z: Coprocessor unit number */
/* cop_fun :Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */

endfunction CoprocessorOperation

Figure 11-18 CoprocessorOperation Pseudocode Function

JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the four PC-relative instructions. The function returns
if the instruction atvAddr is executed in a jump delay slot. A jump delay slot always immediately follows a JR, JA
JALR, or JALX instruction.

JumpDelaySlot(vAddr)

/* vAddr :Virtual address */

endfunction JumpDelaySlot

Figure 11-19 JumpDelaySlot Pseudocode Function

11.3 Op and Function Subfield Notation

In some instructions, the instruction subfieldsopand functioncan have constant 5- or 6-bit values. When reference
made to these instructions, uppercase mnemonics are used. For instance, in the floating-point ADD instruction
op=COP1 andfunction=ADD. In other cases, a single field has both fixed and variable subfields, so the name con
both uppercase and lowercase characters.

11.4 CPU Opcode Map

Key

• CAPITALIZED text indicates an opcode mnemonic

• Italicized text indicates to look at the specified opcode submap for further instruction bit decode

• Entries containing theα symbol indicate that a reserved instruction fault occurs if the core executes this instruc

• Entries containing theβ symbol indicate that a coprocessor unusable exception occurs if the core executes thi
instruction
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 177

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions
Table 11-3 Encoding of theOpcode Field

opcode bits 28..26

0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111

0 000 Special RegImm J JAL BEQ BNE BLEZ BGTZ

1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 010 COP0 β β β BEQL BNEL BLEZL BGTZL

3 011 α α α α Special2 α α α
4 100 LB LH LWL LW LBU LHU LWR α
5 101 SB SH SWL SW α α SWR CACHE

6 110 LL β β PREF α β β α
7 111 SC β β α α β β α

Table 11-4Special Opcode Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 SLL β SRL SRA SLLV α SRLV SRAV

1 001 JR JALR MOVZ MOVN SYSCALL BREAK α SYNC

2 010 MFHI MTHI MFLO MTLO α α α α
3 011 MULT MULTU DIV DIVU α α α α
4 100 ADD ADDU SUB SUBU AND OR XOR NOR

5 101 α α SLT SLTU α α α α
6 110 TGE TGEU TLT TLTU TEQ α TNE α
7 111 α α α α α α α α

Table 11-5Spedial2 Opcode Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 MADD MADDU MUL α MSUB MSUBU α α
1 001 α α α α α α α α
2 010 α α α α α α α α
3 011 α α α α α α α α
4 100 CLZ CLO α α α α α α
5 101 α α α α α α α α
6 110 α α α α α α α α
7 111 α α α α α α α SDBBP

Table 11-6RegImm Encoding of rt Field

rt bits 18..16

0 1 2 3 4 5 6 7

bits 20..19 000 001 010 011 100 101 110 111

0 00 BLTZ BGEZ BLTZL BGEZL α α α α
1 01 TGEI TGEIU TLTI TLTIU TEQI α TNEI α
2 10 BLTZAL BGEZAL BLTZALL BGEZALL α α α α
3 11 α α α α α α α α
178 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

d

11.5 Instruction Set

This section describes the core instructions.Table 11-9lists the instructions in alphabetical order, followed by a detaile
description of each instruction.

Table 11-7COP0 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFCO α α α MTC0 α α α
1 01 α α α α α α α
2 10

CO
3 11

Table 11-8COP0 Encoding of Function Field When rs=CO

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 α TLBR (4Kc)
α (4Km/p)

TLBWI (4Kc)
α (4Km/p) α α α TLBWR (4Kc)

α (4Km/p) α

1 001 TLBP (4Kc)
α (4Km/p) α α α α α α α

2 010 α α α α α α α α
3 011 ERET α α α α α α DERET

4 100 WAIT α α α α α α α
5 101 α α α α α α α α
6 110 α α α α α α α α
7 111 α α α α α α α α

Table 11-9 Instruction Set

Instruction Description Function

ADD Integer Add Rd = Rs + Rt

ADDI Integer Add Immediate Rt = Rs + Immed

ADDIU Unsigned Integer Add Immediate Rt = Rs +U Immed

ADDU Unsigned Integer Add Rd = Rs +U Rt

AND Logical AND Rd = Rs & Rt

ANDI Logical AND Immediate Rt = Rs & (016 || Immed)

B Unconditional Branch
(Asembler idiom for: BEQ r0, r0, offset) PC += (int)offset

BAL Branch and Link
(Asembler idiom for: BGEZAL r0, offset)

GPR[31] = PC + 8
PC += (int)offset

BEQ Branch On Equal if Rs == Rt
PC += (int)offset
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 179

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions
BEQL Branch On Equal Likely

if Rs == Rt
PC += (int)offset

else
Ignore Next Instruction

BGEZ Branch on Greater Than or Equal To Zero if !Rs[31]
PC += (int)offset

BGEZAL Branch on Greater Than or Equal To Zero And
Link

GPR[31] = PC + 8
if !Rs[31]
PC += (int)offset

BGEZALL Branch on Greater Than or Equal To Zero And
Link Likely

GPR[31] = PC + 8
if !Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BGEZL Branch on Greater Than or Equal To Zero
Likely

if !Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BGTZ Branch on Greater Than Zero if !Rs[31] && Rs != 0
PC += (int)offset

BGTZL Branch on Greater Than Zero Likely

if !Rs[31] && Rs != 0
PC += (int)offset

else
 Ignore Next Instruction

BLEZ Branch on Less Than or Equal to Zero if Rs[31] || Rs == 0
PC += (int)offset

BLEZL Branch on Less Than or Equal to Zero Likely

if Rs[31] || Rs == 0
PC += (int)offset

else
Ignore Next Instruction

BLTZ Branch on Less Than Zero if Rs[31]
PC += (int)offset

BLTZAL Branch on Less Than Zero And Link
GPR[31] = PC + 8
if Rs[31]
PC += (int)offset

BLTZALL Branch on Less Than Zero And Link Likely

GPR[31] = PC + 8
if Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BLTZL Branch on Less Than Zero Likely

if Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BNE Branch on Not Equal if Rs != Rt
PC += (int)offset

BNEL Branch on Not Equal Likely

if Rs != Rt
PC += (int)offset

else
Ignore Next Instruction

BREAK Breakpoint Break Exception

Table 11-9 Instruction Set (Continued)

Instruction Description Function
180 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set
CACHE Cache Operation See Cache Description

COP0 Coprocessor 0 Operation See Coprocessor Description

CLO Count Leading Ones Rd = NumLeadingOnes(Rs)

CLZ Count Leading Zeroes Rd = NumLeadingZeroes(Rs)

DERET Return from Debug Exception PC = DEPC
Exit Debug Mode

DIV Divide LO = (int)Rs / (int)Rt
HI = (int)Rs % (int)Rt

DIVU Unsigned Divide LO = (uns)Rs / (uns)Rt
HI = (uns)Rs % (uns)Rt

ERET Return from Exception

if SR[2]
PC = ErrorEPC

else
PC = EPC

SR[1] = 0
SR[2] = 0
LL = 0

J Unconditional Jump PC = PC[31:28] || offset<<2

JAL Jump and Link GPR[31] = PC + 8
PC = PC[31:28] || offset<<2

JALR Jump and Link Register Rd = PC + 8
PC = Rs

JR Jump Register PC = Rs

LB Load Byte Rt = (byte)Mem[Rs+offset]

LBU Unsigned Load Byte Rt = (ubyte))Mem[Rs+offset]

LH Load Halfword Rt = (half)Mem[Rs+offset]

LHU Unsigned Load Halfword Rt = (uhalf)Mem[Rs+offset]

LL Load Linked Word
Rt = Mem[Rs+offset]
LL = 1
LLAdr = Rs + offset

LUI Load Upper Immediate Rt = immediate << 16

LW Load Word Rt = Mem[Rs+offset]

LWL Load Word Left See LWL instruction onpage 247.

LWR Load Word Right See LWR instruction onpage 250.

MADD Multiply-Add HI, LO += (int)Rs * (int)Rt

MADDU Multiply-Add Unsigned HI, LO += (uns)Rs * (uns)Rt

MFC0 Move From Coprocessor 0 Rt = CPR[0, n, sel] = Rt

MFHI Move From HI Rd = HI

MFLO Move From LO Rd = LO

Table 11-9 Instruction Set (Continued)

Instruction Description Function
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 181

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions
MOVN Move Conditional on Not Zero if GPR[rt] ≠ 0 then
GPR[rd]← GPR[rs]

MOVZ Move Conditional on Zero if GPR[rt] = 0 then
GPR[rd]← GPR[rs]

MSUB Multiply-Subtract HI, LO -= (int)Rs * (int)Rt

MSUBU Multiply-Subtract Unsigned HI, LO -= (uns)Rs * (uns)Rt

MTC0 Move To Coprocessor 0 CPR[0, n] = Rt SEL

MTHI Move To HI HI = Rs

MTLO Move To LO LO = Rs

MUL Multiply with register write HI | LO =Unpredictable
Rd = LO

MULT Integer Multiply HI | LO = (int)Rs * (int)Rd

MULTU Unsigned Multiply HI | LO = (uns)Rs * (uns)Rd

NOP No Operation
(Asembler idiom for: SLL r0, r0, r0)

NOR Logical NOR Rd = ~(Rs | Rt)

OR Logical OR Rd = Rs | Rt

ORI Logical OR Immediate Rt = Rs | Immed

PREF Prefetch Load Specified Line into Cache

SB Store Byte (byte)Mem[Rs+offset] = Rt

SC Store Conditional Word
if LL =1
mem[Rxoffs] = Rt

Rt = LL

SDBBP Software Debug Break Point Trap to SW Debug Handler

SH Store Half (half)Mem[Rs+offset] = Rt

SLL Shift Left Logical Rd = Rt << sa

SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]

SLT Set on Less Than

if (int)Rs < (int)Rt
Rd = 1

else
Rd = 0

SLTI Set on Less Than Immediate

if (int)Rs < (int)Immed
Rt = 1

else
Rt = 0

SLTIU Set on Less Than Immediate Unsigned

if (uns)Rs < (uns)Immed
Rt = 1

else
Rt = 0

Table 11-9 Instruction Set (Continued)

Instruction Description Function
182 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set
SLTU Set on Less Than Unsigned

if (uns)Rs < (uns)Immed
Rd = 1

else
Rd = 0

SRA Shift Right Arithmetic Rd = (int)Rt >> sa

SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]

SRL Shift Right Logical Rd = (uns)Rt >> sa

SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]

SSNOP Superscalar Inhibit No Operation

SUB Integer Subtract Rt = (int)Rs - (int)Rd

SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd

SW Store Word Mem[Rs+offset] = Rt

SWL Store Word Left See SWL instruction onpage 298.

SWR Store Word Right See SWR instruction onpage 300.

SYNC Synchronize See SYNC instruction onpage 302.

SYSCALL System Call SystemCallException

TEQ Trap if Equal if Rs == Rt
TrapException

TEQI Trap if Equal Immediate if Rs == (int)Immed
TrapException

TGE Trap if Greater Than or Equal if (int)Rs >= (int)Rt
TrapException

TGEI Trap if Greater Than or Equal Immediate if (int)Rs >= (int)Immed
TrapException

TGEIU Trap if Greater Than or Equal Immediate
Unsigned

if (uns)Rs >= (uns)Immed
TrapException

TGEU Trap if Greater Than or Equal Unsigned if (uns)Rs >= (uns)Rt
TrapException

TLBWI Write Indexed TLB Entry (4K core) See TLBWI instruction on
page 314.

TLBWR Write Random TLB Entry (4K core) See TLBWR instruction on
page 316.

TLBP Probe TLB for Matching Entry (4K core) See TLBP instruction onpage 311.

TLBR Read Index for TLB Entry (4K core) See TLBR instruction onpage 312.

TLT Trap if Less Than if (int)Rs < (int)Rt
TrapException

TLTI Trap if Less Than Immediate if (int)Rs < (int)Immed
TrapException

TLTIU Trap if Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
TrapException

Table 11-9 Instruction Set (Continued)

Instruction Description Function
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 183

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions
TLTU Trap if Less Than Unsigned if (uns)Rs < (uns)Rt
TrapException

TNE Trap if Not Equal if Rs != Rt
TrapException

TNEI Trap if Not Equal Immediate if Rs != (int)Immed
TrapException

WAIT Wait for Interrupts Stall until interrupt occurs

XOR Exclusive OR Rd = Rs ^ Rt

XORI Exclusive OR Immediate Rt = Rs ^ (uns)Immed

Table 11-9 Instruction Set (Continued)

Instruction Description Function
184 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

 and
ADD

Format: ADD rd, rs, rt MIPS32

Purpose:

To add 32-bit integers. If an overflow occurs, then trap.

Description: rd ← rs + rt

The 32-bit word value in GPRrt is added to the 32-bit value in GPRrs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified
an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is placed into GPRrd.

Restrictions:

None

Operation:

temp ← (GPR[rs] 31||GPR[rs] 31..0) + (GPR[rt] 31||GPR[rt] 31..0)
if temp 32 ≠ temp 31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

ADD

100000

6 5 5 5 5 6

Add Word ADD
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 185

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

 and
ADDI

Format: ADDI rt, rs, immediate MIPS32

Purpose:

To add a constant to a 32-bit integer. If overflow occurs, then trap.

Description: rt ← rs + immediate

The 16-bit signedimmediateis added to the 32-bit value in GPRrs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified
an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is placed into GPRrt.

Restrictions:

None

Operation:

temp ← (GPR[rs] 31||GPR[rs] 31..0) + sign_extend(immediate)
if temp 32 ≠ temp 31 then

SignalException(IntegerOverflow)
else

GPR[rt] ← temp
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDIU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 0

ADDI

001000
rs rt immediate

6 5 5 16

Add Immediate Word ADDI
186 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

es not
r arith-
ADDIU

Format: ADDIU rt, rs, immediate MIPS32

Purpose:

To add a constant to a 32-bit integer

Description: rt ← rs + immediate

The 16-bit signedimmediateis added to the 32-bit value in GPRrs and the 32-bit arithmetic result is placed into
GPRrt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← GPR[rs] + sign_extend(immediate)
GPR[rt] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that do
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or intege
metic environments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 0

ADDIU

001001
rs rt immediate

6 5 5 16

Add Immediate Unsigned Word ADDIU
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 187

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

es not
r arith-
ADDU

Format: ADDU rd, rs, rt MIPS32

Purpose:

To add 32-bit integers

Description: rd ← rs + rt

The 32-bit word value in GPRrt is added to the 32-bit value in GPRrs and the 32-bit arithmetic result is placed into
GPRrd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← GPR[rs] + GPR[rt]
GPR[rd] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that do
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or intege
metic environments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

ADDU

100001

6 5 5 5 5 6

Add Unsigned Word ADDU
188 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set
AND

Format: AND rd, rs, rt MIPS32

Purpose:

To do a bitwise logical AND

Description: rd ← rs AND rt

The contents of GPRrs are combined with the contents of GPRrt in a bitwise logical AND operation. The result is
placed into GPRrd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] and GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

AND

100100

6 5 5 5 5 6

And AND
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 189

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions
ANDI

Format: ANDI rt, rs, immediate MIPS32

Purpose:

To do a bitwise logical AND with a constant

Description: rt ← rs AND immediate

The 16-bitimmediateis zero-extended to the left and combined with the contents of GPRrs in a bitwise logical AND
operation. The result is placed into GPRrt.

Restrictions:

None

Operation:

GPR[rt] ← GPR[rs] and zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

ANDI

001100
rs rt immediate

6 5 5 16

And Immediate ANDI
190 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

by the

ng

e

r

B

Format: B offset Assembly Idiom

Purpose:

To do an unconditional branch

Description: branch

B offset is the assembly idiom used to denote an unconditional branch. The actual instruction is interpreted
hardware as BEQ r0, r0, offset.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
I+1: PC ← PC + target_offset

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 Kbytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BEQ

000100

0

00000

0

00000
offset

6 5 5 16

Unconditional Branch B
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 191

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

by the

ranch,

ng

e

hen
BAL

Format: BAL rs, offset Assembly Idiom

Purpose:

To do an unconditional PC-relative procedure call

Description: procedure_call

BAL offset is the assembly idiom used to denote an unconditional branch. The actual instruction is iterpreted
hardware as BGEZAL r0, offset.

Place the return address link in GPR 31. The return link is the address of the second instruction following the b
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

GPR 31 must not be used for the source registerrs, because such an instruction does not have the same effect w
reexecuted. The result of executing such an instruction isUNPREDICTABLE . This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
GPR[31] ← PC + 8

I+1: PC ← PC + target_offset

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

31 26 25 21 20 16 15 0

REGIMM

000001

0

00000

BGEZAL

10001
offset

6 5 5 16

Branch and Link BAL
192 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

ng

elay

e

r

BEQ

Format: BEQ rs, rt, offset MIPS32

Purpose:

To compare GPRs then do a PC-relative conditional branch

Description: if rs = rt then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs and GPRrt are equal, branch to the effective target address after the instruction in the d
slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← (GPR[rs] = GPR[rt])

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 Kbytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

BEQ r0, r0 offset, expressed as B offset, is the assembly idiom used to denote an unconditional branch.

31 26 25 21 20 16 15 0

BEQ

000100
rs rt offset

6 5 5 16

Branch on Equal BEQ
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 193

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

.

ng

lot is

e

BEQL

Format: BEQL rs, rt, offset MIPS32

Purpose:

To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the branch is taken

Description: if rs = rt then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs and GPRrt are equal, branch to the target address after the instruction in the delay s
executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← (GPR[rs] = GPR[rt])

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

BEQL

010100
rs rt offset

6 5 5 16

Branch on Equal Likely BEQL
194 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

r

rom a
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Branch on Equal Likely (cont.) BEQL
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 195

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

ng

ter the

e

r

BGEZ

Format: BGEZ rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if rs ≥ 0 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than or equal to zero (sign bit is 0), branch to the effective target address af
instruction in the delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≥ 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BGEZ

00001
offset

6 5 5 16

Branch on Greater Than or Equal to Zero BGEZ
196 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

ranch,

ng

ter the

e

hen

d link.
ge.
BGEZAL

Format: BGEZAL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional procedure call

Description: if rs ≥ 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the b
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than or equal to zero (sign bit is 0), branch to the effective target address af
instruction in the delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

GPR 31 must not be used for the source registerrs, because such an instruction does not have the same effect w
reexecuted. The result of executing such an instruction isUNPREDICTABLE . This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≥ 0 GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

BGEZAL r0, offset, expressed as BAL offset, is the assembly idiom used to denote a PC-relative branch an
BAL is used in a manner similar to JAL, but provides PC-relative addressing and a more limited target PC ran

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BGEZAL

10001
offset

6 5 5 16

Branch on Greater Than or Equal to Zero and Link BGEZAL
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 197

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

ken.

ranch,

ng

ter the
ted.

hen

e

BGEZALL

Format: BGEZALL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the branch is ta

Description: if rs ≥ 0 then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction following the b
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than or equal to zero (sign bit is 0), branch to the effective target address af
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not execu

Restrictions:

GPR 31 must not be used for the source registerrs, because such an instruction does not have the same effect w
reexecuted. The result of executing such an instruction isUNPREDICTABLE . This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≥ 0 GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
else

NullifyCurrentInstruction()
endif

Exceptions:

None

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BGEZALL

10011
offset

6 5 5 16

Branch on Greater Than or Equal to Zero and Link Likely BGEZALL
198 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

rom a
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Branch on Greater Than or Equal to Zero and Link Likely (con’t.) BGEZALL
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 199

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

ng

ter the
ted.

e

BGEZL

Format: BGEZL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if rs ≥ 0 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than or equal to zero (sign bit is 0), branch to the effective target address af
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not execu

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≥ 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BGEZL

00011
offset

6 5 5 16

Branch on Greater Than or Equal to Zero Likely BGEZL
200 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

r

rom a
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Branch on Greater Than or Equal to Zero Likely (cont.) BGEZL
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 201

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

ng

dress

e

r

BGTZ

Format: BGTZ rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if rs > 0 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than zero (sign bit is 0 but value not zero), branch to the effective target ad
after the instruction in the delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] > 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BGTZ

000111
rs

0

00000
offset

6 5 5 16

Branch on Greater Than Zero BGTZ
202 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

ng

dress
ot exe-

e

BGTZL

Format: BGTZL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if rs > 0 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than zero (sign bit is 0 but value not zero), branch to the effective target ad
after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is n
cuted.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] > 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

BGTZL

010111
rs

0

00000
offset

6 5 5 16

Branch on Greater Than Zero Likely BGTZL
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 203

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

r

rom a
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Branch on Greater Than Zero Likely (cont.) BGTZL
204 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

ng

arget

e

r

BLEZ

Format: BLEZ rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if rs ≤ 0 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective t
address after the instruction in the delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≤ 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BLEZ

000110
rs

0

00000
offset

6 5 5 16

Branch on Less Than or Equal to Zero BLEZ
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 205

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

ng

arget
slot is

e

BLEZL

Format: BLEZL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if rs ≤ 0 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective t
address after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay
not executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≤ 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

BLEZL

010110
rs

0

00000
offset

6 5 5 16

Branch on Less Than or Equal to Zero Likely BLEZL
206 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

r

rom a
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Branch on Less Than or Equal to Zero Likely (cont.) BLEZL
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 207

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

ng

ion in

e

BLTZ

Format: BLTZ rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if rs < 0 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than zero (sign bit is 1), branch to the effective target address after the instruct
the delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:
I: target_offset ← sign_extend(offset || 0 2)

condition ← GPR[rs] < 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BLTZ

00000
offset

6 5 5 16

Branch on Less Than Zero BLTZ
208 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

ranch,

ng

ion in

hen
eption

e

BLTZAL

Format: BLTZAL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional procedure call

Description: if rs < 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the b
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than zero (sign bit is 1), branch to the effective target address after the instruct
the delay slot is executed.

Restrictions:

GPR 31 must not be used for the source registerrs, because such an instruction does not have the same effect w
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exc
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] < 0 GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BLTZAL

10000
offset

6 5 5 16

Branch on Less Than Zero and Link BLTZAL
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 209

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

ken.

ranch,

ng

ion in

hen
eption

e

BLTZALL

Format: BLTZALL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the branch is ta

Description: if rs < 0 then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction following the b
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than zero (sign bit is 1), branch to the effective target address after the instruct
the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

GPR 31 must not be used for the source registerrs, because such an instruction does not have the same effect w
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exc
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] < 0 GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
else

NullifyCurrentInstruction()
endif

Exceptions:

None

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BLTZALL

10010
offset

6 5 5 16

Branch on Less Than Zero and Link Likely BLTZALL
210 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

rom a
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Branch on Less Than Zero and Link Likely (cont.) BLTZALL
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 211

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

ng

ion in

e

BLTZL

Format: BLTZL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if rs < 0 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than zero (sign bit is 1), branch to the effective target address after the instruct
the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] < 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BLTZL

00010
offset

6 5 5 16

Branch on Less Than Zero Likely BLTZL
212 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

r

rom a
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Branch on Less Than Zero Likely (cont.) BLTZL
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 213

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

ng

the

e

r

BNE

Format: BNE rs, rt, offset MIPS32

Purpose:

To compare GPRs then do a PC-relative conditional branch

Description: if rs ≠ rt then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs and GPRrt are not equal, branch to the effective target address after the instruction in
delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← (GPR[rs] ≠ GPR[rt])

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BNE

000101
rs rt offset

6 5 5 16

Branch on Not Equal BNE
214 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

.

ng

the

e

BNEL

Format: BNEL rs, rt, offset MIPS32

Purpose:

To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the branch is taken

Description: if rs ≠ rt then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs and GPRrt are not equal, branch to the effective target address after the instruction in
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← (GPR[rs] ≠ GPR[rt])

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

BNEL

010101
rs rt offset

6 5 5 16

Branch on Not Equal Likely BNEL
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 215

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

r

rom a
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Branch on Not Equal Likely (cont.) BNEL
216 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

r. The
ing the
BREAK

Format: BREAK MIPS32

Purpose:

To cause a Breakpoint exception

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handle
codefield is available for use as software parameters, but is retrieved by the exception handler only by load
contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException(Breakpoint)

Exceptions:

Breakpoint

31 26 25 6 5 0

SPECIAL

000000
code

BREAK

001101

6 20 6

Breakpoint BREAK
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 217

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

ss. The
ache as
CACHE

Format: CACHE op, offset(base) MIPS32

Purpose:

To perform the cache operation specified by op.

Description:

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective addre
effective address is used in one of the following ways based on the operation to be performed and the type of c
described in the following table.

31 26 25 21 20 16 15 0

CACHE

101111
base op offset

6 5 5 16

Table 11-10 Usage of Effective Address

Operation
Requires an

Type of
Cache

Usage of Effective Address

Address Physical The effective address is translated by the MMU to a physical address. The physical
address is then used to address the cache

Index N/A

The effective address is translated by the MMU to a physical address. It is
implementation dependent whether the effective address or the translated physical
address is used to index the cache.

Assuming that the total cache size in bytes is CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

OffsetBit ← Log2(BPT)
IndexBit ← Log2(CS / A)
WayBit ← IndexBit + Ceiling(Log2(A))
Way ← Addr WayBit-1..IndexBit
Index ← Addr IndexBit-1..OffsetBit

For a direct-mapped cache, the Way calculation is ignored and the Index value
fully specifies the cache tag. This is shown symbolically in the figure below.

Perform Cache Operation CACHE
218 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

dex
ould use
r TLB

ple, if
ed via a
ion is

n of the
instruc-

tions,
-based
Figure 11-20 Usage of Address Fields to Select Index and Way

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For in
operations (where the address is used to index the cache but need not match the cache tag) software sh
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions no
Refill exceptions with a cause code of TLBS, nor data Watch exceptions.

A Cache Error exception may occur as a byproduct of some operations performed by this instruction. For exam
a Writeback operation detects a cache or bus error during the processing of the operation, that error is report
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruct
terminated in an error.

An address Error Exception (with cause code equal AdEL) occurs if the effective address references a portio
kernel address space which would normally result in such an exception.Data watch is not triggered by a cache
tion whose address matches the Watch register address match conditions.

Bits [17:16] of the instruction specify the cache on which to perform the operation, as follows:

Bits [20:18] of the instruction specify the operation to perform. .On Index Load Tag and Index Store Data opera
the specific wordthat is addressed is loaded into / read from the DataLo . All other cache instructions are line
and the word and byte indexes will not affect their operation.

Table 11-11 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache

2#00 I Primary Instruction

2#01 D Primary Data

2#10 T Not supported

2#11 S Not supported

Perform Cache Operation CACHE

Way

0

Index

OffsetBitIndexBitWayBit

Unused byte index
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 219

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions
Table 11-12 Encoding of Bits [20:18] of the CACHE Instruction ErrCtl[WST,SPR] Cleared

Code Caches Name Effective
Address
Operand

Type

Operation Implemented?

2#000

I Index Invalidate Index

Set the state of the cache block at the specified
index to invalid.

This encoding may be used by software to
invalidate the entire instruction cache by
stepping through all valid indices.

Yes

D Index Invalidate Index

Set the state of the cache block at the specified
index to invalid.

This encoding may be used by software to
invalidate the entire data cache by stepping
through all valid indices. Note that Index Store
Tag should be used to initialize the cache at
powerup.

Yes

S, T Reserved Index No

2#001 I,D Index Load Tag Index

Read the tag for the cache block at the specified
index into theTagLo Coprocessor 0 register.
Also read the data corresponding to the byte
index into theDataLo register.

Yes

2#010 I,D Index Store Tag Index

Write the tag for the cache block at the
specified index from theTagLoCoprocessor 0
register.

This encoding may be used by software to
initialize the entire instruction or data caches
by stepping through all valid indices. Doing so
requires that theTagLo andTagHi registers
associated with the cache be initialized first.

Yes

2#011 All
Reserved

Unspecified
Executed as a no-op.

No

Perform Cache Operation CACHE
220 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set
2#100

I, D Hit Invalidate Address If the cache block contains the specified
address, set the state of the cache block to
invalid.

This encoding may be used by software to
invalidate a range of addresses from the
instruction cache by stepping through the
address range by the line size of the cache.

Yes

S, T Reserved Address No

2#101

I Fill Address

Fill the cache from the specified address.

The cache line is refetched even if it is already
in the cache. Yes

D Hit Invalidate Address If the cache block contains the specified
address, set the state of the cache block to
invalid.

This encoding may be used by software to
invalidate a range of addresses from the data
cache by stepping through the address range by
the line size of the cache.

Yes

S, T Reserved Address No

2#110

D Reserved Address

Executed as a no-op.

No

S, T Reserved Address No

2#111 I,D Fetch and Lock Address

If the cache does not contain the entire line at
the specified address, it is fetched from
memory, and the state is set to locked. If the
cache already contains the line, set the state to
locked.

The lock state may be cleared by executing an
Index Invalidate or Hit Invalidate operation to
the locked line, or via an Index Store Tag
operation to the line that clears the lock bit.

Yes

Table 11-12 Encoding of Bits [20:18] of the CACHE Instruction ErrCtl[WST,SPR] Cleared

Code Caches Name Effective
Address
Operand

Type

Operation Implemented?
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 221

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions
Table 11-13 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST] Set. ErrCtl[SPR] Cleared

Code Caches Name Effective
Address
Operand

Type

Operation Implemented?

2#011 I, D Index Store Data Index Write the DataLo Coprocessor 0 register
contents at the way and byte index specified. Yes

All
Others All All of the other codes behave the same as when

ErrCtl[WST] is cleared.
222 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set
Table 11-14 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[SPR] Set

Code Caches Name Effective
Address
Operand

Type

Operation Implemented?

2#001 I, D Index Load Tag Index Read the SPRAM tag at the specified index into
theTagLo Coprocessor 0 register. Yes

2#010 I, D Index Store Tag Index Update the SPRAM tag at the specified index
from theTagLo Coprocessor 0 register. Yes

2#011 I, D Index Store Data Index
Write the DataLo Coprocessor 0 register
contents into the SPRAM at the word index
specified.

Yes

All
Others All All of the other codes behave the same as when

ErrCtl[SPR] is cleared.
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 223

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

che-
Restrictions:

The operation of this instruction isUNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction isUNDEFINED if the operaation requires an address, and that address is unca
able.

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, uncached) ← AddressTranslation(vAddr, DataReadReference)
CacheOp(op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception

Coprocessor Unusable Exception

Address Error Exception

Bus Error Exception

Perform Cache Operation (cont.) CACHE
224 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

unted

oth the
CLO

Format: CLO rd, rs MIPS32

Purpose:

To Count the number of leading ones in a word

Description: rd ← count_leading_ones rs

Bits 31..0 of GPRrs are scanned from most significant to least significant bit. The number of leading ones is co
and the result is written to GPRrd. If all of bits 31..0 were set in GPRrs, the result written to GPRrd is 32.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in b
rt andrd fields of the instruction. The operation of the instruction isUNPREDICTABLE if the rt andrd fields of the
instruction contain different values.

Operation:

temp ← 32
for i in 31 .. 0

if GPR[rs] i = 0 then
temp ← 31 - i
break

endif
endfor
GPR[rd] ← temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt rd

0

00000

CLO

100001

6 5 5 5 5 6

Count Leading Ones in Word CLO
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 225

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

unted

oth the
CLZ

Format: CLZ rd, rs MIPS32

Purpose

Count the number of leading zeros in a word

Description: rd ← count_leading_zeros rs

Bits 31..0 of GPRrs are scanned from most significant to least significant bit. The number of leading zeros is co
and the result is written to GPRrd. If no bits were set in GPRrs, the result written to GPRrt is 32.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in b
rt andrd fields of the instruction. The operation of the instruction isUNPREDICTABLE if the rt andrd fields of the
instruction contain different values.

Operation:

temp ← 32
for i in 31 .. 0

if GPR[rs] i = 1 then
temp ← 31 - i
break

endif
endfor
GPR[rd] ← temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt rd

0

00000

CLZ

100000

6 5 5 5 5 6

Count Leading Zeros in Word CLZ
226 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

ained in

on, a
instruc-

ch and
r-mode
DERET

Format: DERET EJTAG

Purpose:

To Return from a debug exception.

Description:

DERET returns from Debug Mode and resumes non-debug execution at the instruction whose address is cont
theDEPC register. DERET does not execute the next instruction (i.e. it has no delay slot).

Restrictions:

A DERET placed between an LL and SC instruction does not cause the SC to fail.

If the DEPC register with the return address for the DERET was modified by an MTC0 or a DMTC0 instructi
CP0 hazard hazard exists that must be removed via software insertion of the apporpriate number of SSNOP
tions.

The DERET instruction implements a software barrier for all changes in the CP0 state that could affect the fet
decode of the instruction at the PC to which the DERET returns, such as changes to the effective ASID, use
state, and addressing mode.

This instruction is legal only if the processor is executing in Debug Mode.The operation of the processor isUNDE-
FINED if a DERET is executed in the delay slot of a branch or jump instruction.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

DERET

011111

6 1 19 6

Debug Exception Return DERET
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 227

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions
Operation:

DebugDM ← 0
DebugIEXI ← 0
if IsMIPS16Implemented() then

PC ← DEPC31..1 || 0
ISAMode ← 0 || DEPC0

else
PC ← DEPC

endif

Exceptions:

Coprocessor Unusable Exception
Reserved Instruction Exception

Debug Exception Return (cont.) DERET
228 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

s.
DIV

Format: DIV rs, rt MIPS32

Purpose:

To divide a 32-bit signed integers

Description: (LO, HI) ← rs / rt

The 32-bit word value in GPRrs is divided by the 32-bit value in GPRrt, treating both operands as signed value
The 32-bit quotient is placed into special registerLO and the 32-bit remainder isplaced into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPRrt is zero, the arithmetic result value isUNPREDICTABLE .

Operation:
q ← GPR[rs] 31..0 div GPR[rt] 31..0
LO ← q
r ← GPR[rs] 31..0 mod GPR[rt] 31..0
HI ← r

Exceptions:

None

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

DIV

011010

6 5 5 10 6

Divide Word DIV
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 229

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

ed and
divi-

th the
more

te
nal con-
EAK
Programming Notes:

No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow conditions are detect
some action taken, then the divide instruction is typically followed by additional instructions to check for a zero
sor and/or for overflow. If the divide is asynchronous then the zero-divisor check can execute in parallel wi
divide. The action taken on either divide-by-zero or overflow is either a convention within the program itself, or
typically within the system software; one possibility is to take a BREAK exception with acodefield value to signal
the problem to the system software.

As an example, the C programming language in a UNIX® environment expects division by zero to either termina
the program or execute a program-specified signal handler. C does not expect overflow to cause any exceptio
dition. If the C compiler uses a divide instruction, it also emits code to test for a zero divisor and execute a BR
instruction to inform the operating system if a zero is detected.

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

Divide Word (cont.) DIV
230 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

s.
DIVU

Format: DIVU rs, rt MIPS32

Purpose:

To divide a 32-bit unsigned integers

Description: (LO, HI) ← rs / rt

The 32-bit word value in GPRrs is divided by the 32-bit value in GPRrt, treating both operands as unsigned value
The 32-bit quotient is placed into special registerLO and the 32-bit remainder is placed into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPRrt is zero, the arithmetic result value is undefined.

Operation:

q ← (0 || GPR[rs] 31..0) div (0 || GPR[rt] 31..0)
r ← (0 || GPR[rs] 31..0) mod (0 || GPR[rt] 31..0)
LO ← sign_extend(q 31..0)
HI ← sign_extend(r 31..0)

Exceptions:

None

Programming Notes:

See “Programming Notes” for the DIV instruction.

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

DIVU

011011

6 5 5 10 6

Divide Unsigned Word DIVU
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 231

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

ERET

c-

of the
address-
ERET

Format: ERET MIPS32

Purpose:

To return from interrupt, exception, or error trap.

Description:

ERET returns to the interrupted instruction at the completion of interrupt, exception, or error trap processing.
does not execute the next instruction (i.e., it has no delay slot).

Restrictions:

The operation of the processor isUNDEFINED if an ERET is executed in the delay slot of a branch or jump instru
tion.

An ERET placed between an LL and SC instruction will always cause the SC to fail.

ERET implements a software barrier for all changes in the CP0 state that could affect the fetch and decode
instruction at the PC to which the ERET returns, such as changes to the effective ASID, user-mode state, and
ing mode.

Operation:

if Status ERL = 1 then
temp ← ErrorEPC
Status ERL ← 0

else
temp ← EPC
Status EXL ← 0

endif
if IsMIPS16Implemented() then

PC ← temp 31..1 || 0
ISAMode ← temp 0

else
PC ← temp

endif
LLbit ← 0

Exceptions:
Coprocessor Unusable Exception

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

ERET

011000

6 1 19 6

Exception Return ERET
232 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

egion.
e-

before

e

PC is an
ranch

MB
J

Format: J target MIPS32

Purpose:

To branch within the current 256 MB-aligned region

Description:

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned r
The low 28 bits of the target address is theinstr_indexfield shifted left 2 bits. The remaining upper bits are the corr
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot,
executing the jump itself.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I:
I+1: PC ← PC GPRLEN..28 || instr_index || 0 2

Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the
advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a b
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the jump instruction is in the last word of a 256
region, it can branch only to the following 256 MB region containing the branch delay slot.

31 26 25 0

J

000010
instr_index

6 26

Jump J
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 233

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

ranch,

egion.
e-

before

e

PC is an
ranch

6 MB
JAL

Format: JAL target MIPS32

Purpose:

To execute a procedure call within the current 256 MB-aligned region

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the b
at which location execution continues after a procedure call.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned r
The low 28 bits of the target address is theinstr_indexfield shifted left 2 bits. The remaining upper bits are the corr
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot,
executing the jump itself.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: GPR[31] ← PC + 8
I+1: PC ← PC GPRLEN..28 || instr_index || 0 2

Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the
advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a b
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 25
region, it can branch only to the following 256 MB region containing the branch delay slot.

31 26 25 0

JAL

000011
instr_index

6 26

Jump and Link JAL
234 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

ch,

y

ne

rchi-

n reex-
dler to

S16
target

nd bit 1

e

JALR

Format: JALR rs (rd = 31 implied) MIPS32
JALR rd, rs MIPS32

Purpose:

To execute a procedure call to an instruction address in a register

Description: rd ← return_addr, PC ← rs

Place the return address link in GPRrd. The return link is the address of the second instruction following the bran
where execution continues after a procedure call.

For processors that do not implement the MIPS16 ASE:

• Jump to the effective target address in GPRrs. Execute the instruction that follows the jump, in the branch dela
slot, before executing the jump itself.

For processors that do implement the MIPS16 ASE:

• Jump to the effective target address in GPRrs. Set theISA Mode bit to the value in GPRrs bit 0. Bit 0 of the
target address is always zero so that no Address Exceptions occur when bit 0 of the source register is o

At this time the only defined hint field value is 0, which sets default handling of JALR. Future versions of the a
tecture may define additional hint values.

Restrictions:

Register specifiersrs andrd must not be equal, because such an instruction does not have the same effect whe
ecuted. The result of executing such an instruction is undefined. This restriction permits an exception han
resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

The effective target address in GPRrs must be naturally-aligned. For processors that do not implement the MIP
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch
is subsequently fetched as an instruction. For processors that do implement the MIPS16 ASE, if bit 0 is zero a
is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs

0

00000
rd hint

JALR

001001

6 5 5 5 5 6

Jump and Link Register JALR
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 235

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

s use
Operation:

I: temp ← GPR[rs]
GPR[rd] ← PC + 8

I+1: if Config1 CA = 0 then
PC ← temp

else
PC ← temp GPRLEN-1..1 || 0
ISAMode ← temp 0

endif

Exceptions:

None

Programming Notes:

This is the only branch-and-link instruction that can select a register for the return link; all other link instruction
GPR 31. The default register for GPRrd, if omitted in the assembly language instruction, is GPR 31.

Jump and Link Register, cont. JALR
236 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

ot,

S16
target

nd bit 1

hitec-

e

JR

Format: JR rs MIPS32

Purpose:

To execute a branch to an instruction address in a register

Description: PC ← rs

Jump to the effective target address in GPRrs. Execute the instruction following the jump, in the branch delay sl
before jumping.

For processors that implement the MIPS16 ASE, set theISA Modebit to the value in GPRrs bit 0. Bit 0 of the target
address is always zero so that no Address Exceptions occur when bit 0 of the source register is one

Restrictions:

The effective target address in GPRrs must be naturally-aligned. For processors that do not implement the MIP
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch
is subsequently fetched as an instruction. For processors that do implement the MIPS16 ASE, if bit 0 is zero a
is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

At this time the only defined hint field value is 0, which sets default handling of JR. Future versions of the arc
ture may define additional hint values.

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: temp ← GPR[rs]
I+1: if Config1 CA = 0 then

PC ← temp
else

PC ← temp GPRLEN-1..1 || 0
ISAMode ← temp 0

endif

Exceptions:

None

31 26 25 21 20 11 10 6 5 0

SPECIAL

000000
rs

0

00 0000 0000
hint

JR

001000

6 5 10 5 6

Jump Register JR
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 237

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

,

Programming Notes:

Software should use the value 31 for thers field of the instruction word on return from a JAL, JALR, or BGEZAL
and should use a value other than 31 for remaining uses of JR.

Jump Register, cont. JR
238 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

tended,
LB

Format: LB rt, offset(base) MIPS32

Purpose:

To load a byte from memory as a signed value

Description: rt ← memory[base+offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-ex
and placed in GPRrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
memword← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr 1..0 xor BigEndianCPU 2

GPR[rt] ← sign_extend(memword 7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error

31 26 25 21 20 16 15 0

LB

100000
base rt offset

6 5 5 16

Load Byte LB
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 239

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

tended,
LBU

Format: LBU rt, offset(base) MIPS32

Purpose:

To load a byte from memory as an unsigned value

Description: rt ← memory[base+offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-ex
and placed in GPRrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
memword← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr 1..0 xor BigEndianCPU 2

GPR[rt] ← zero_extend(memword 7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error

31 26 25 21 20 16 15 0

LBU

100100
base rt offset

6 5 5 16

Load Byte Unsigned LBU
240 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

tched,

ddress
LH

Format: LH rt, offset(base) MIPS32

Purpose:

To load a halfword from memory as a signed value

Description: rt ← memory[base+offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fe
sign-extended, and placed in GPRrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effec-
tive address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an A
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE–1..2 || (pAddr 1..0 xor (ReverseEndian || 0))
memword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr 1..0 xor (BigEndianCPU || 0)
GPR[rt] ← sign_extend(memword 15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

31 26 25 21 20 16 15 0

LH

100001
base rt offset

6 5 5 16

Load Halfword LH
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 241

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

tched,

ddress
LHU

Format: LHU rt, offset(base) MIPS32

Purpose:

To load a halfword from memory as an unsigned value

Description: rt ← memory[base+offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fe
zero-extended, and placed in GPRrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effec-
tive address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an A
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE–1..2 || (pAddr 1..0 xor (ReverseEndian || 0))
memword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr 1..0 xor (BigEndianCPU || 0)
GPR[rt] ← zero_extend(memword 15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error

31 26 25 21 20 16 15 0

LHU

100101
base rt offset

6 5 5 16

Load Halfword Unsigned LHU
242 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

s for

bit
register

ocessor.

e atomi-

fail on

MW

ress is
LL

Format: LL rt, offset(base) MIPS32

Purpose:

To load a word from memory for an atomic read-modify-write

Description: rt ← memory[base+offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operation
cached memory locations.

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address. The contents of the 32-
word at the memory location specified by the aligned effective address are fetched, sign-extended to the GPR
length if necessary, and written into GPRrt.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per pr

When an LL is executed it starts an active RMW sequence replacing any other sequence that was active.

The RMW sequence is completed by a subsequent SC instruction that either completes the RMW sequenc
cally and succeeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the R
sequence without attempting a write.

Restrictions:

The addressed location must be cached; if it is not, the result is undefined.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective add
non-zero, an Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword
LLbit ← 1

31 26 25 21 20 16 15 0

LL

110000
base rt offset

6 5 5 16

Load Linked Word LL
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 243

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions
Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction

Programming Notes:

There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

Load Linked Word (cont.) LL
244 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

lt is
LUI

Format: LUI rt, immediate MIPS32

Purpose:

To load a constant into the upper half of a word

Description: rt ← immediate || 0 16

The 16-bit immediateis shifted left 16 bits and concatenated with 16 bits of low-order zeros. The 32-bit resu
placed into GPRrt.

Restrictions:

None

Operation:

GPR[rt] ← immediate || 0 16

Exceptions:

None

31 26 25 21 20 16 15 0

LUI

001111

0

00000
rt immediate

6 5 5 16

Load Upper Immediate LUI
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 245

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

tched,

ero, an
LW

Format: LW rt, offset(base) MIPS32

Purpose:

To load a word from memory as a signed value

Description: rt ← memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fe
sign-extended to the GPR register length if necessary, and placed in GPRrt. The 16-bit signedoffsetis added to the
contents of GPRbaseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-z
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

31 26 25 21 20 16 15 0

LW

100011
base rt offset

6 5 5 16

Load Word LW
246 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

4 con-

r word
nder of
LWL

Format: LWL rt, offset(base) MIPS32

Purpose:

To load the most-significant part of a word as a signed value from an unaligned memory address

Description: rt ← rt MERGE memory[base+offset]

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address(EffAddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word(W) in memory starting at an arbitrary byte
boundary.

The most-significant 1 to 4 bytes ofW is in the aligned word containing theEffAddr. This part ofW is loaded into the
most-significant (left) part of the word in GPRrt. The remaining least-significant part of the word in GPRrt is
unchanged.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The
secutive bytes in 2..5 form an unaligned word starting at location 2. A part ofW, 2 bytes, is in the aligned word con-
taining the most-significant byte at 2. First, LWL loads these 2 bytes into the left part of the destination registe
and leaves the right part of the destination word unchanged. Next, the complementary LWR loads the remai
the unaligned word

Figure 11-21 Unaligned Word Load Using LWL and LWR

31 26 25 21 20 16 15 0

LWL

100010
base rt offset

6 5 5 16

Load Word Left LWL

Word at byte 2 in big-endian memory; each memory byte contains its own address

 most - significance - least

0 1 2 3 4 5 6 7 8 9 Memory initial contents

e f g h GPR 24 Initial contents

2 3 g h After executing LWL $24,2($0)

2 3 4 5 Then after LWR $24,5($0)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 247

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

ithin an
or
ing.
The bytes loaded from memory to the destination register depend on both the offset of the effective address w
aligned word, that is, the low 2 bits of the address (vAddr1..0), and the current byte-ordering mode of the process
(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte order

Figure 11-22 Bytes Loaded by LWL Instruction

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ←big-endian

I J K L offset (vAddr1..0) e f g h

3 2 1 0 ←little-endian most least

most least — significance —

— significance —

Destination register contents after instruction (shaded is unchanged)

Big-endian vAddr1..0 Little-endian

I J K L 0 L f g h

J K L h 1 K L g h

K L g h 2 J K L h

L f g h 3 I J K L

Load Word Left (con’t) LWL
248 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

ing bits
Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
if BigEndianMem = 0 then

pAddr ← pAddr PSIZE-1..2 || 0 2

endif
byte ← vAddr 1..0 xor BigEndianCPU 2

memword← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ← memword 7+8*byte..0 || GPR[rt] 23-8*byte..0
GPR[rt] ← temp

Exceptions:

None

TLB Refill, TLB Invalid, Bus Error, Address Error

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zero
63..32 of the destination register when bit 31 is loaded.

Load Word Left (con’t) LWL
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 249

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

.

4 con-

gister.
LWR

Format: LWR rt, offset(base) MIPS32

Purpose:

To load the least-significant part of a word from an unaligned memory address as a signed value

Description: rt ← rt MERGE memory[base+offset]

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address(EffAddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word(W) in memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word containingEffAddr. This part ofW is loaded into
the least-significant (right) part of the word in GPRrt. The remaining most-significant part of the word in GPRrt is
unchanged.

Executing both LWR and LWL, in either order, delivers a sign-extended word value in the destination register

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The
secutive bytes in 2..5 form an unaligned word starting at location 2. A part ofW, 2 bytes, is in the aligned word con-
taining the least-significant byte at 5. First, LWR loads these 2 bytes into the right part of the destination re
Next, the complementary LWL loads the remainder of the unaligned word.

31 26 25 21 20 16 15 0

LWR

100110
base rt offset

6 5 5 16

Load Word Right LWR
250 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

ithin an
or
ing.
Figure 11-23 Unaligned Word Load Using LWL and LWR

The bytes loaded from memory to the destination register depend on both the offset of the effective address w
aligned word, that is, the low 2 bits of the address (vAddr1..0), and the current byte-ordering mode of the process
(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte order

Load Word Right (cont.) LWR

Word at byte 2 in big-endian memory; each memory byte contains its own address

 most - significance - least

0 1 2 3 4 5 6 7 8 9 Memory initial contents

e f g h GPR 24 Initial contents

e f 4 5 After executing LWR $24,5($0)

2 3 4 5 Then after LWL $24,2($0)
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 251

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions
Figure 11-24 Bytes Loaded by LWL Instruction

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ←big-endian

I J K L offset (vAddr1..0) e f g h

3 2 1 0 ←little-endian most least

most least — significance—

— significance —

Destination register contents after instruction (shaded is unchanged)

Big-endian vAddr1..0 Little-endian Little-endian

e f g I 0 I J K L

e f I J 1 e I J K

e I J K 2 e f I J

I J K L 3 e f g I

Load Word Right (cont.) LWR
252 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

ing bits
Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
if BigEndianMem = 0 then

pAddr ← pAddr PSIZE-1..2 || 0 2

endif
byte ← vAddr 1..0 xor BigEndianCPU 2

memword← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ← memword 31..32-8*byte || GPR[rt] 31–8*byte..0
GPR[rt] ← temp

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zero
63..32 of the destination register when bit 31 is loaded.

Load Word Right (cont.) LWR
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 253

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

d

MADD

Format: MADD rs, rt MIPS32

Purpose:

To multiply two words and add the result to Hi, Lo

Description: (LO,HI) ← (rs × rt) + (LO,HI)

The 32-bit word value in GPRrs is multiplied by the 32-bit word value in GPRrt, treating both operands as signe
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values ofHI andLO.. The most sig-
nificant 32 bits of the result are written intoHI and the least signficant 32 bits are written intoLO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← (HI || LO) + (GPR[rs] × GPR[rt])
HI ← temp 63..32
LO ← temp 31..0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt

0

0000

0

00000

MADD

000000

6 5 5 5 5 6

Multiply and Add Word to Hi,Lo MADD
254 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

d

MADDU

Format: MADDU rs, rt MIPS32

Purpose:

To multiply two unsigned words and add the result to Hi, Lo.

Description: (LO,HI) ← (rs × rt) + (LO,HI)

The 32-bit word value in GPRrs is multiplied by the 32-bit word value in GPRrt, treating both operands as unsigne
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values ofHI andLO.. The most sig-
nificant 32 bits of the result are written intoHI and the least signficant 32 bits are written intoLO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← (HI || LO) + (GPR[rs] × GPR[rt])
HI ← temp 63..32
LO ← temp 31..0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt

0

00000

0

00000

MADDU

000001

6 5 5 5 5 6

Multiply and Add Unsigned Word to Hi,Lo MADDU
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 255

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

register
.

MFC0

Format: MFC0 rt, rd MIPS32
MFC0 rt, rd, sel MIPS32

Purpose:

To move the contents of a coprocessor 0 register to a general register.

Description: rt ← CPR[0,rd,sel]

The contents of the coprocessor 0 register specified by the combination of rd and sel are loaded into general
rt. Note that not all coprocessor 0 registers support the sel field. In those instances, the sel field must be zero

Restrictions:

The results areUNDEFINED if coprocessor 0 does not contain a register as specified byrd andsel.

Operation:

data ← CPR[0,rd,sel]
GPR[rt] ← data

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP0

010000

MF

00000
rt rd

0

00000000
sel

6 5 5 5 8 3

Move from Coprocessor 0 MFC0
256 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set
MFHI

Format: MFHI rd MIPS32

Purpose:

To copy the special purposeHI register to a GPR

Description: rd ← HI

The contents of special registerHI are loaded into GPRrd.

Restrictions:

None

Operation:

GPR[rd] ← HI

Exceptions:

None

31 26 25 16 15 11 10 6 5 0

SPECIAL

000000

0

00 0000 0000
rd

0

00000

MFHI

010000

6 10 5 5 6

Move From HI Register MFHI
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 257

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions
MFLO

Format: MFLO rd MIPS32

Purpose:

To copy the special purposeLO register to a GPR

Description: rd ← LO

The contents of special registerLO are loaded into GPRrd.

Restrictions: None

Operation:
GPR[rd] ← LO

Exceptions:

None

31 26 25 16 15 11 10 6 5 0

SPECIAL

000000

0

00 0000 0000
rd

0

00000

MFLO

010010

6 10 5 5 6

Move From LO Register MFLO
258 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

-

MOVN

Format: MOVN rd, rs, rt MIPS32

Purpose:

To conditionally move a GPR after testing a GPR value

Description: if rt ≠ 0 then rd ← rs

If the value in GPRrt is not equal to zero, then the contents of GPRrs are placed into GPRrd.

Restrictions:

None

Operation:

if GPR[rt] ≠ 0 then
GPR[rd] ← GPR[rs]

endif

Exceptions:

None

Programming Notes:

The non-zero value tested here is thecondition trueresult from the SLT, SLTI, SLTU, and SLTIU comparison instruc
tions.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

MOVN

001011

6 5 5 5 5 6

Move Conditional on Not Zero MOVN
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 259

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

-

MOVZ

Format: MOVZ rd, rs, rt MIPS32

Purpose:

To conditionally move a GPR after testing a GPR value

Description: if rt = 0 then rd ← rs

If the value in GPRrt is equal to zero, then the contents of GPRrs are placed into GPRrd.

Restrictions:

None

Operation:

if GPR[rt] = 0 then
GPR[rd] ← GPR[rs]

endif

Exceptions:

None

Programming Notes:

The zero value tested here is thecondition falseresult from the SLT, SLTI, SLTU, and SLTIU comparison instruc
tions.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

MOVZ

001010

6 5 5 5 5 6

Move Conditional on Zero MOVZ
260 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

s,
MSUB

Format: MSUB rs, rt MIPS32

Purpose:

To multiply two words and subtract the result from Hi, Lo

Description: (LO,HI) ← (rs × rt) - (LO,HI)

The 32-bit word value in GPRrs is multiplied by the 32-bit value in GPRrt, treating both operands as signed value
to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values ofHI andLO.. The most sig-
nificant 32 bits of the result are written intoHI and the least signficant 32 bits are written intoLO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← (HI || LO) - (GPR[rs] × GPR[rt])
HI ← temp 63..32
LO ← temp 31..0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt

0

00000

0

00000

MSUB

000100

6 5 5 5 5 6

Multiply and Subtract Word to Hi,Lo MSUB
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 261

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

d

MSUBU

Format: MSUBU rs, rt MIPS32

Purpose:

To multiply two words and subtract the result from Hi, Lo

Description: (LO,HI) ← (rs × rt) - (LO,HI)

The 32-bit word value in GPRrs is multiplied by the 32-bit word value in GPRrt, treating both operands as unsigne
values, to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values ofHI andLO.. The
most significant 32 bits of the result are written intoHI and the least signficant 32 bits are written intoLO. No arith-
metic exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← (HI || LO) - (GPR[rs] × GPR[rt])
HI ← temp 63..32
LO ← temp 31..0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt

0

00000

0

00000

MSUBU

000101

6 5 5 5 5 6

Multiply and Subtract Word to Hi,Lo MSUBU
262 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

f rd and
ro.
MTC0

Format: MTC0 rt, rd MIPS32
MTC0 rt, rd, sel MIPS32

Purpose:

To move the contents of a general register to a coprocessor 0 register.

Description: CPR[r0, rd, sel] ← rt

The contents of general register rt are loaded into the coprocessor 0 register specified by the combination o
sel. Not all coprocessor 0 registers support the the sel field. In those instances, the sel field must be set to ze

Restrictions:

The results areUNDEFINED if coprocessor 0 does not contain a register as specified byrd andsel.

Operation:

CPR[0,rd,sel] ← data

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP0

010000

MT

00100
rt rd

0

0000 000
sel

6 5 5 5 8 3

Move to Coprocessor 0 MTC0
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 263

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions
MTHI

Format: MTHI rs MIPS32

Purpose:

To copy a GPR to the special purposeHI register

Description: HI ← rs

The contents of GPRrs are loaded into special registerHI.

Restrictions:

A computed result written to theHI/LO pair by DIV, DIVU,MULT, or MULTU must be read by MFHI or MFLO
before a new result can be written into eitherHI or LO.

Operation:

HI ← GPR[rs]

Exceptions:

None

31 26 25 21 20 6 5 0

SPECIAL

000000
rs

0

000 0000 0000 0000

MTHI

010001

6 5 15 6

Move to HI Register MTHI
264 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set
MTLO

Format: MTLO rs MIPS32

Purpose:

To copy a GPR to the special purposeLO register

Description: LO ← rs

The contents of GPRrs are loaded into special registerLO.

Restrictions:

A computed result written to theHI/LO pair by DIV, DIVU, MULT, or MULTU must be read by MFHI or MFLO
before a new result can be written into eitherHI or LO.

Operation:

LO ← GPR[rs]

Exceptions:

None

31 26 25 21 20 6 5 0

SPECIAL

000000
rs

0

000 0000 0000 0000

MTLO

010011

6 5 15 6

Move to LO Register MTLO
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 265

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

s,
MUL

Format: MUL rd, rs, rt MIPS32

Purpose:

To multiply two words and write the result to a GPR.

Description: rd ← rs × rt

The 32-bit word value in GPRrs is multiplied by the 32-bit value in GPRrt, treating both operands as signed value
to produce a 64-bit result. The least significant 32 bits of the product are written to GPRrd. The contents ofHI and
LO areUNPREDICTABLE after the operation. No arithmetic exception occurs under any circumstances.

Restrictions:

Note that this instruction does not provide the capability of writing the result to the HI and LO registers.

Operation:

temp <- GPR[rs] * GPR[rt]
GPR[rd] <- temp 31..0
HI <- UNPREDICTABLE
LO <- UNPREDICTABLE

Exceptions:

None

Programming Notes:

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt rd

0

00000

MUL

000010

6 5 5 5 5 6

Multiply Word to GPR MUL
266 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

s,
MULT

Format: MULT rs, rt MIPS32

Purpose:

To multiply 32-bit signed integers

Description: (LO, HI) ← rs × rt

The 32-bit word value in GPRrt is multiplied by the 32-bit value in GPRrs, treating both operands as signed value
to produce a 64-bit result. The low-order 32-bit word of the result is placed into special registerLO, and the
high-order 32-bit word is splaced into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:

prod ← GPR[rs] 31..0 × GPR[rt] 31..0
LO ← prod 31..0
HI ← prod 63..32

Exceptions:

None

Programming Notes:

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

MULT

011000

6 5 5 10 6

Multiply Word MULT
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 267

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

l-
MULTU

Format: MULTU rs, rt MIPS32

Purpose:

To multiply 32-bit unsigned integers

Description: (LO, HI) ← rs × rt

The 32-bit word value in GPRrt is multiplied by the 32-bit value in GPRrs, treating both operands as unsigned va
ues, to produce a 64-bit result. The low-order 32-bit word of the result is placed into special registerLO, and the
high-order 32-bit word is placed into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:

prod ← (0 || GPR[rs] 31..0) × (0 || GPR[rt] 31..0)
LO ← prod 31..0
HI ← prod 63..32

Exceptions:

None

Programming Notes:

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

MULTU

011001

6 5 5 10 6

Multiply Unsigned Word MULTU
268 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

as SLL

h and
NOP

Format: NOP Assembly Idiom

Purpose:

To perform no operation.

Description:

NOP is the assembly idiom used to denote no operation. The actual instruction is interpreted by the hardware
r0, r0, 0.

Restrictions:

None

Operation:

None

Exceptions:

None

Programming Notes:

The zero instruction word, which represents SLL, r0, r0, 0, is the preferred NOP for software to use to fill branc
jump delay slots and to pad out alignment sequences.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000

0

00000

0

00000

0

00000

SLL

000000

6 5 5 5 5 6

No Operation NOP
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 269

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions
NOR

Format: NOR rd, rs, rt MIPS32

Purpose:

To do a bitwise logical NOT OR

Description: rd ← rs NOR rt

The contents of GPRrs are combined with the contents of GPRrt in a bitwise logical NOR operation. The result is
placed into GPRrd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] nor GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

NOR

100111

6 5 5 5 5 6

Not Or NOR
270 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set
OR

Format: OR rd, rs, rt MIPS32

Purpose:

To do a bitwise logical OR

Description: rd ← rs or rt

The contents of GPRrs are combined with the contents of GPRrt in a bitwise logical OR operation. The result is
placed into GPRrd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] or GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

OR

100101

6 5 5 5 5 6

Or OR
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 271

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions
ORI

Format: ORI rt, rs, immediate MIPS32

Purpose:

To do a bitwise logical OR with a constant

Description: rt ← rs or immediate

The 16-bitimmediateis zero-extended to the left and combined with the contents of GPRrs in a bitwise logical OR
operation. The result is placed into GPRrt.

Restrictions:

None

Operation:

GPR[rt] ← GPR[rs] or zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

ORI

001101
rs rt immediate

6 5 5 16

Or Immediate ORI
272 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

gram.

eption, the
tion that

emory
store to
PREF

Format: PREF hint,offset(base) MIPS32

Purpose:

To move data between memory and cache.

Description: prefetch_memory(base+offset)

PREF adds the 16-bit signedoffsetto the contents of GPRbaseto form an effective byte address. Thehint field sup-
plies information about the way that the data is expected to be used.

PREF is an advisory instruction that may change the performance of the program. However, for allhint values and all
effective addresses, it neither changes the architecturally visible state nor does it alter the meaning of the pro

PREF does not cause addressing-related exceptions. If the address specified would cause an addressing exc
exception condition is ignored and no data movement occurs. However even if no data is prefetched, some ac
is not architecturally visible, such as writeback of a dirty cache line, can take place.

PREF never generates a memory operation for a location with anuncached memory access type.

If PREF results in a memory operation, the memory access type used for the operation is determined by the m
access type of the effective address, just as it would be if the memory operation had been caused by a load or
the effective address.

Thehint field supplies information about the way the data is expected to be used. Ahint value cannot cause an action
to modify architecturally visible state.

31 26 25 21 20 16 15 0

PREF

110011
base hint offset

6 5 5 16

Prefetch PREF
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 273

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

ans-
to be
Any of the following conditions causes the 4K core to treat a PREF instruction as a NOP.

• A reservedhint value is used

• Writeback-invalidate (25)hint value is used

• The address has a translation error

• The address maps to an uncacheable page

• The data is already in the cache

• There is already another load/prefetch outstanding

In all other cases, except whenhint equals 25, execution of the PREF instruction initiates an external bus read tr
action. PREF is a non-blocking operation and does not cause the pipeline to stall while waiting for the data
returned.

Prefetch (cont.) PREF
274 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set
Table 11-15 Values of thehint Field for the PREF Instruction

Value Name Data Use and Desired Prefetch Action

0 load
Use: Prefetched data is expected to be read (not modified).

Action: Fetch data as if for a load.

1 store
Use: Prefetched data is expected to be stored or modified.

Action: Fetch data as if for a store.

2-3 Reserved Reserved - treated as a NOP.

4 load_streamed

Use: Prefetched data is expected to be read (not modified) but not
reused extensively; it “streams” through cache.

Action: Fetch data as if for a load and place it in the cache so that it
does not displace data prefetched as “retained.”

5 store_streamed

Use: Prefetched data is expected to be stored or modified but not
reused extensively; it “streams” through cache.

Action: Fetch data as if for a store and place it in the cache so that
it does not displace data prefetched as “retained.”

6 load_retained

Use: Prefetched data is expected to be read (not modified) and
reused extensively; it should be “retained” in the cache.

Action: Fetch data as if for a load and place it in the cache so that it
is not displaced by data prefetched as “streamed.”

7 store_retained

Use: Prefetched data is expected to be stored or modified and reused
extensively; it should be “retained” in the cache.

Action: Fetch data as if for a store and place it in the cache so that
it is not displaced by data prefetched as “streamed.”

Prefetch (cont.) PREF
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 275

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions
8-24 Reserved Reserved - treated as a NOP.

25 writeback_invalidate
(also known as “nudge”)

Use: Data is no longer expected to be used.

Treated as a NOP.

26-29
Implementation
Dependent Reserved - treated as a NOP.

30 PrepareForStore

Use: Prepare the cache for writing an entire line, without the
overhead involved in filling the line from memory.

Reserved - treated as a NOP.

31
Implementation
Dependent Reserved - treated as a NOP.

Table 11-15 Values of thehint Field for the PREF Instruction
276 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

e TLB.
prefetch

ss pointer
Restrictions:

None

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot prefetch data from a mapped location unless the translation for that location is present in th
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so
may not be effective for such locations.

Prefetch does not cause addressing exceptions. It does not cause an exception to prefetch using an addre
value before the validity of a pointer is determined.

Prefetch (cont.) PREF
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 277

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

The
SB

Format: SB rt, offset(base) MIPS32

Purpose:

To store a byte to memory

Description: memory[base+offset] ← rt

The least-significant 8-bit byte of GPRrt is stored in memory at the location specified by the effective address.
16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

None

Operation:
vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
bytesel ← vAddr 1..0 xor BigEndianCPU 2

dataword ← GPR[rt] 31–8*bytesel..0 || 0 8*bytesel

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

31 26 25 21 20 16 15 0

SB

101000
base rt offset

6 5 5 16

Store Byte SB
278 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

ched

omplete

e

il; the

ion of
ds.

address
SC

Format: SC rt, offset(base) MIPS32

Purpose:

To store a word to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[base+offset] ← rt, rt ← 1 else rt ← 0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for ca
memory locations.

The 16-bit signedoffset is added to the contents of GPRbaseto form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To c
the RMW sequence atomically, the following occur:

• The least-significant 32-bit word of GPRrt is stored into memory at the location specified by the aligned effectiv
address.

• A 1, indicating success, is written into GPRrt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPRrt.

If the following event occurs between the execution of LL and SC, the SC fails:

• An exception occurs on the processor executing the LL/SC.

If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fa
success or failure is not predictable. Portable programs should not cause one of these events.

• A load, store, or prefetch is executed on the processor executing the LL/SC.

• The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous reg
virtual memory. The region does not have to be aligned, other than the alignment required for instruction wor

The following conditions must be true or the result of the SC is undefined:

• Execution of SC must have been preceded by execution of an LL instruction.

• A RMW sequence executed without intervening exceptions must use the same address in the LL and SC. The
is the same if the virtual address, physical address, and cache-coherence algorithm are identical.

31 26 25 21 20 16 15 0

SC

111000
base rt offset

6 5 5 16

Store Conditional Word SC
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 279

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

rates

with

ade
r

with a
mic

ero, an
Atomic RMW is provided only for cached memory locations. The extent to which the detection of atomicity ope
correctly depends on the system implementation and the memory access type used for the location:

• MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location must be made
a memory access type ofcached coherent.

• Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location must be m
with memory access type of eithercached noncoherent or cached coherent. All accesses must be to one or the othe
access type, and they may not be mixed.

I/O System: To provide atomic RMW with a coherent I/O system, all accesses to the location must be made
memory access type ofcached coherent. If the I/O system does not use coherent memory operations, then ato
RMW cannot be provided with respect to the I/O reads and writes.

Restrictions:

The addressed location must have a memory access type ofcached noncoherentor cached coherent; if it does not, the
result is undefined.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-z
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rt]
if LLbit then

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt] ← 0 31 || LLbit

Store Conditional Word (cont.) SC
280 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

mples of
re emu-

n

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction

Programming Notes:

LL and SC are used to atomically update memory locations, as shown below.

L1:
LL T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SC T2, (T0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some exa
these are arithmetic operations that trap, system calls, and floating point operations that trap or require softwa
lation assistance.

LL and SC function on a single processor forcached noncoherentmemory so that parallel programs can be run o
uniprocessor systems that do not supportcached coherent memory access types.

Store Conditional Word (cont.) SC
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 281

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

be used
y load-
t used
SDBBP

Format: SDBBP code EJTAG

Purpose:

To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. The code field can
for passing information to the debug exception handler, and is retrieved by the debug exception handler only b
ing the contents of the memory word containing the instruction, using the DEPC register. The CODE field is no
in any way by the hardware.

Restrictions:

None

Operation:

If Debug DM = 0 then
SignalDebugBreakpointException()

else
SignalDebugModeBreakpointException()

endif

Exceptions:

Debug Breakpoint Exception

31 26 25 6 5 0

SPECIAL2

011100
code

SDBBP

111111

6 20 6

Software Debug Breakpoint SDBBP
282 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

c-

ddress
SH

Format: SH rt, offset(base) MIPS32

Purpose:

To store a halfword to memory

Description: memory[base+offset] ← rt

The least-significant 16-bit halfword of registerrt is stored in memory at the location specified by the aligned effe
tive address. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an A
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..2 || (pAddr1 1..0 xor (ReverseEndian || 0))
bytesel ← vAddr1 1..0 xor (BigEndianCPU || 0)
dataword ← GPR[rt] 31–8*bytesel..0 || 0 8*bytesel

StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error

31 26 25 21 20 16 15 0

SH
101001

base rt offset

6 5 5 16

Store Halfword SH
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 283

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

rd

break on
SLL

Format: SLL rd, rt, sa MIPS32

Purpose:

To left-shift a word by a fixed number of bits

Description: rd ← rt << sa

The contents of the low-order 32-bit word of GPRrt are shifted left, inserting zeros into the emptied bits; the wo
result is placed in GPRrd. The bit-shift amount is specified bysa.

Restrictions:

None

Operation:
s ← sa
temp ← GPR[rt] (31-s)..0 || 0 s

GPR[rd] ← temp

Exceptions:

None

Programming Notes:

SLL r0, r0, 0, expressed as NOP, is the assembly idiom used to denote no operation.

SLL r0, r0, 1, expressed as SSNOP, is the assembly idiom used to denote no operation that causes an issue
superscalar processors.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

SLL

000000

6 5 5 5 5 6

Shift Word Left Logical SLL
284 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

ult
SLLV

Format: SLLV rd, rt, rs MIPS32

Purpose: To left-shift a word by a variable number of bits

Description: rd ← rt << rs

The contents of the low-order 32-bit word of GPRrt are shifted left, inserting zeros into the emptied bits; the res
word is placed in GPRrd. The bit-shift amount is specified by the low-order 5 bits of GPRrs.

Restrictions: None

Operation:
s ← GPR[rs] 4..0
temp ← GPR[rt] (31-s)..0 || 0 s

GPR[rd] ← temp

Exceptions: None

Programming Notes:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SLLV

000100

6 5 5 5 5 6

Shift Word Left Logical Variable SLLV
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 285

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

n in
SLT

Format: SLT rd, rs, rt MIPS32

Purpose:

To record the result of a less-than comparison

Description: rd ← (rs < rt)

Compare the contents of GPRrs and GPRrt as signed integers and record the Boolean result of the compariso
GPRrd. If GPRrs is less than GPRrt, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < GPR[rt] then
GPR[rd] ← 0 GPRLEN-1 || 1

else
GPR[rd] ← 0 GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SLT

101010

6 5 5 5 5 6

Set on Less Than SLT
286 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

of
SLTI

Format: SLTI rt, rs, immediate MIPS32

Purpose:

To record the result of a less-than comparison with a constant

Description: rt ← (rs < immediate)

Compare the contents of GPRrs and the 16-bit signedimmediateas signed integers and record the Boolean result
the comparison in GPRrt. If GPRrs is less thanimmediate,the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < sign_extend(immediate) then
GPR[rd] ← 0 GPRLEN-1|| 1

else
GPR[rd] ← 0 GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 0

SLTI

001010
rs rt immediate

6 5 5 16

Set on Less Than Immediate SLTI
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 287

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

an

argest
-32767,
SLTIU

Format: SLTIU rt, rs, immediate MIPS32

Purpose:

To record the result of an unsigned less-than comparison with a constant

Description: rt ← (rs < immediate)

Compare the contents of GPRrs and the sign-extended 16-bitimmediateas unsigned integers and record the Boole
result of the comparison in GPRrt. If GPRrs is less thanimmediate, the result is 1 (true); otherwise, it is 0 (false).

Because the 16-bitimmediateis sign-extended before comparison, the instruction can represent the smallest or l
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned
max_unsigned] end of the unsigned range.

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
GPR[rd] ← 0 GPRLEN-1 || 1

else
GPR[rd] ← 0 GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 0

SLTIU

001011
rs rt immediate

6 5 5 16

Set on Less Than Immediate Unsigned SLTIU
288 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

n in
SLTU

Format: SLTU rd, rs, rt MIPS32

Purpose:

To record the result of an unsigned less-than comparison

Description: rd ← (rs < rt)

Compare the contents of GPRrs and GPRrt as unsigned integers and record the Boolean result of the compariso
GPRrd. If GPRrs is less than GPRrt, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || GPR[rt]) then
GPR[rd] ← 0 GPRLEN-1 || 1

else
GPR[rd] ← 0 GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SLTU

101011

6 5 5 5 5 6

Set on Less Than Unsigned SLTU
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 289

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

d

SRA

Format: SRA rd, rt, sa MIPS32

Purpose:

To execute an arithmetic right-shift of a word by a fixed number of bits

Description: rd ← rt >> sa (arithmetic)

The contents of the low-order 32-bit word of GPRrt are shifted right, duplicating the sign-bit (bit 31) in the emptie
bits; the word result is placed in GPRrd. The bit-shift amount is specified bysa.

Restrictions:

None

Operation:

s ← sa
temp ← (GPR[rt] 31) s || GPR[rt] 31..s
GPR[rd] ← temp

Exceptions: None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

SRA

000011

6 5 5 5 5 6

Shift Word Right Arithmetic SRA
290 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

d

SRAV

Format: SRAV rd, rt, rs MIPS32

Purpose:

To execute an arithmetic right-shift of a word by a variable number of bits

Description: rd ← rt >> rs (arithmetic)

The contents of the low-order 32-bit word of GPRrt are shifted right, duplicating the sign-bit (bit 31) in the emptie
bits; the word result is placed in GPRrd. The bit-shift amount is specified by the low-order 5 bits of GPRrs.

Restrictions:

None

Operation:

s ← GPR[rs] 4..0
temp ← (GPR[rt] 31) s || GPR[rt] 31..s
GPR[rd] ← temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SRAV

000111

6 5 5 5 5 6

Shift Word Right Arithmetic Variable SRAV
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 291

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

rd
SRL

Format: SRL rd, rt, sa MIPS32

Purpose:

To execute a logical right-shift of a word by a fixed number of bits

Description: rd ← rt >> sa (logical)

The contents of the low-order 32-bit word of GPRrt are shifted right, inserting zeros into the emptied bits; the wo
result is placed in GPRrd. The bit-shift amount is specified bysa.

Restrictions:

None

Operation:

s ← sa
temp ← 0 s || GPR[rt] 31..s
GPR[rd] ← temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

SRL

000010

6 5 5 5 5 6

Shift Word Right Logical SRL
292 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

rd
SRLV

Format: SRLV rd, rt, rs MIPS32

Purpose:

To execute a logical right-shift of a word by a variable number of bits

Description: rd ← rt >> rs (logical)

The contents of the low-order 32-bit word of GPRrt are shifted right, inserting zeros into the emptied bits; the wo
result is placed in GPRrd. The bit-shift amount is specified by the low-order 5 bits of GPRrs.

Restrictions:

None

Operation:

s ← GPR[rs] 4..0
temp ← 0 s || GPR[rt] 31..s
GPR[rd] ← temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SRLV

000110

6 5 5 5 5 6

Shift Word Right Logical Variable SRLV
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 293

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

d by the

ction to
SSNOP

ctions
ET, one
SSNOP

Format: SSNOP MIPS32

Purpose:

Break superscalar issue on a superscalar processor.

Description:

SSNOP is the assembly idiom used to denote superscalar no operation. The actual instruction is interprete
hardware as SLL r0, r0, 1.

This instruction alters the instruction issue behavior on a superscalar processor by forcing the SSNOP instru
single-issue. The processor must then end the current instruction issue between the instruction previous to the
and the SSNOP. The SSNOP then issues alone in the next issue slot.

On a single-issue processor, this instruction is a NOP that takes an issue slot.

Restrictions:

None

Operation:

None

Exceptions:

None

Programming Notes:

SSNOP is intended for use primarily to allow the programmer control over CP0 hazards by converting instru
into cycles in a superscalar processor. For example, to insert at least two cycles between an MTC0 and an ER
would use the following sequence:

mtc0 x,y
ssnop
ssnop
eret

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000

0

00000

0

00000

1

00001

SLL

000000

6 5 5 5 5 6

Superscalar No Operation SSNOP
294 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

n Inte-
SUB

Format: SUB rd, rs, rt MIPS32

Purpose:

To subtract 32-bit integers. If overflow occurs, then trap

Description: rd ← rs - rt

The 32-bit word value in GPRrt is subtracted from the 32-bit value in GPRrs to produce a 32-bit result. If the sub-
traction results in 32-bit 2’s complement arithmetic overflow, then the destination register is not modified and a
ger Overflow exception occurs. If it does not overflow, the 32-bit result is placed into GPRrd.

Restrictions:

None

Operation:

temp ← (GPR[rs] 31||GPR[rs] 31..0) − (GPR[rt] 31||GPR[rt] 31..0)
if temp 32 ≠ temp 31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp 31..0
endif

Exceptions:

Integer Overflow

Programming Notes:

SUBU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SUB

100010

6 5 5 5 5 6

Subtract Word SUB
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 295

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

es not
nviron-
SUBU

Format: SUBU rd, rs, rt MIPS32

Purpose:

To subtract 32-bit integers

Description: rd ← rs - rt

The 32-bit word value in GPRrt is subtracted from the 32-bit value in GPRrs and the 32-bit arithmetic result is and
placed into GPRrd.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← GPR[rs] - GPR[rt]
GPR[rd] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that do
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic e
ments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SUBU

100011

6 5 5 5 5 6

Subtract Unsigned Word SUBU
296 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

ive

ero, an
SW

Format: SW rt, offset(base) MIPS32

Purpose:

To store a word to memory

Description: memory[base+offset] ← rt

The least-significant 32-bit word of registerrt is stored in memory at the location specified by the aligned effect
address. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-z
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rt]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error

31 26 25 21 20 16 15 0

SW

101011
base rt offset

6 5 5 16

Store Word SW
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 297

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

he 4

from
aligned

ithin an
or
ering.
SWL

Format: SWL rt, offset(base) MIPS32

Purpose:

To store the most-significant part of a word to an unaligned memory address

Description: memory[base+offset] ← rt

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address(EffAddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word(W) in memory starting at an arbitrary byte
boundary.

A part of W, the most-significant 1 to 4 bytes, is in the aligned word containingEffAddr. The same number of the
most-significant (left) bytes from the word in GPRrt are stored into these bytes ofW.

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. T
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part ofW, 2 bytes, is located in the aligned
word containing the most-significant byte at 2. First, SWL stores the most-significant 2 bytes of the low word
the source register into these 2 bytes in memory. Next, the complementary SWR stores the remainder of the un
word.

Figure 11-25 Unaligned Word Store Using SWL and SWR

The bytes stored from the source register to memory depend on both the offset of the effective address w
aligned word—that is, the low 2 bits of the address (vAddr1..0)—and the current byte-ordering mode of the process
(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte ord

31 26 25 21 20 16 15 0

SWL

101010
base rt offset

6 5 5 16

Word at byte 2 in memory, big-endian byte order; each memory byte contains its own address

most — significance — least

0 1 2 3 4 5 6 7 8 ... Memory: Initial contents

GPR 24 E F G H

0 1 E F 4 5 6 ... After executingSWL $24,2($0)

0 1 E F G H 6 ... Then afterSWR $24,5($0)

Store Word Left SWL
298 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set
Figure 11-26 Bytes Stored by an SWL Instruction

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
If BigEndianMem = 0 then

pAddr ← pAddr PSIZE-1..2 || 0 2

endif
byte ← vAddr 1..0 xor BigEndianCPU 2

dataword ← 0 24–8*byte || GPR[rt] 31..24–8*byte
StoreMemory(CCA, byte, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ←big-endian 64-bit register

i j k l offset (vAddr1..0) A B C D E F G H

3 2 1 0 ←little-endian most — significance — least

most least 32-bit register E F G H

— significance —

Memory contents after instruction (shaded is unchanged)

Big-endian
byte ordering vAddr1..0

Little-endian
byte ordering

E F G H 0 i j k E

i E F G 1 i j E F

i j E F 2 i E F G

i j k E 3 E F G H

Store Word Left (cont.) SWL
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 299

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

he 4

word
r of the
SWR

Format: SWR rt, offset(base) MIPS32

Purpose:

To store the least-significant part of a word to an unaligned memory address

Description: memory[base+offset] ← rt

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address(EffAddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word(W) in memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word containingEffAddr. The same number of the
least-significant (right) bytes from the word in GPRrt are stored into these bytes ofW.

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. T
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part ofW, 2 bytes, is contained in the
aligned word containing the least-significant byte at 5. First, SWR stores the least-significant 2 bytes of the low
from the source register into these 2 bytes in memory. Next, the complementary SWL stores the remainde
unaligned word.

Figure 11-27 Unaligned Word Store Using SWR and SWL

31 26 25 21 20 16 15 0

SWR

101110
base rt offset

6 5 5 16

Word at byte 2 in memory, big-endian byte order, each mem byte contains its address

least — significance — least

0 1 2 3 4 5 6 7 8 ... Memory: Initial contents

GPR 24 E F G H

0 1 2 3 G H 6 ... After executingSWR $24,5($0)

0 1 E F G H 6 ... Then afterSWL $24,2($0)

Store Word Right SWR
300 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

ithin an
or
ering.
The bytes stored from the source register to memory depend on both the offset of the effective address w
aligned word—that is, the low 2 bits of the address (vAddr1..0)—and the current byte-ordering mode of the process
(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte-ord

Figure 11-28 Bytes Stored by SWR Instruction

Restrictions:

None

Operation:
vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
If BigEndianMem = 0 then

pAddr ← pAddr PSIZE-1..2 || 0 2

endif
byte ← vAddr 1..0 xor BigEndianCPU 2

dataword ← GPR[rt] 31–8*byte || 0 8*byte

StoreMemory(CCA, WORD-byte, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ← big-endian 64-bit register

i j k l offset (vAddr1..0) A B C D E F G H

3 2 1 0 ← little-endian most — significance — least

most least 32-bit register E F G H

— significance —

Memory contents after instruction (shaded is unchanged)

Big-endian
byte ordering vAddr1..0

Little-endian byte
ordering

H j k l 0 E F G H

G H k l 1 F G H l

F G H l 2 G H k l

E F G H 3 H j k l

Store Word Right (cont.) SWR
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 301

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

NC

isible to

ible
xit from

ntil all

ore
2

SYNC

Format: SYNC (stype = 0 implied) MIPS32

Purpose:

To order loads and stores.

Description:

Simple Description:

• SYNC affects onlyuncachedandcached coherentloads and stores. The loads and stores that occur before the SY
must be completed before the loads and stores after the SYNC are allowed to start.

• Loads are completed when the destination register is written. Stores are completed when the stored value is v
every other processor in the system.

• SYNC is required, potentially in conjunction with SSNOP, to guarantee that memory reference results are vis
across operating mode changes. For example, a SYNC is required on some implementations on entry to and e
Debug Mode to guarantee that memory affects are handled correctly.

Detailed Description:

• SYNC does not guarantee the order in which instruction fetches are performed. Thestype values 1-31 are reserved;
they produce the same result as the value zero.

• Executing the SYNC instruction causes the write-through buffer to be flushed. The SYNC instruction stalls u
loads and stores are completed.

• The innformation presented here refers to the MIPS 4K core implementation of the SYNC instruction. For a m
detailed description of the programming effects of SYNC on a generic MIPS32 processor, refer to the MIPS3
Architecture Reference Manual.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00 0000 0000 0000 0
stype

SYNC

001111

6 15 5 6

Synchronize Shared Memory SYNC
302 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set
Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types other thanuncachedandcached
coherent is UNPREDICTABLE .

Operation:
SyncOperation(stype)

Exceptions:

None

Synchronize Shared Memory (cont.) SYNC
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 303

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

.

ading
SYSCALL

Format: SYSCALL MIPS32

Purpose:

To cause a System Call exception

Description:

A system call exception occurs, immediately and unconditionally transferring control to the exception handler

Thecodefield is available for use as software parameters, but is retrieved by the exception handler only by lo
the contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException(SystemCall)

Exceptions:

System Call

31 26 25 6 5 0

SPECIAL

000000
code

SYSCALL

001100

6 20 6

System Call SYSCALL
304 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

ware.
TEQ

Format: TEQ rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: if rs = rt then Trap

Compare the contents of GPRrs and GPRrt as signed integers; if GPRrs is equal to GPRrt, then take a Trap excep-
tion.

The contents of thecodefield are ignored by hardware and may be used to encode information for system soft
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] = GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TEQ

110100

6 5 5 10 6

Trap if Equal TEQ
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 305

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions
TEQI

Format: TEQI rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs = immediate then Trap

Compare the contents of GPRrs and the 16-bit signedimmediateas signed integers; if GPRrs is equal toimmediate,
then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] = sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TEQI

01100
immediate

6 5 5 16

Trap if Equal Immediate TEQI
306 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

ware.
TGE

Format: TGE rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: if rs ≥ rt then Trap

Compare the contents of GPRrs and GPRrt as signed integers; if GPRrs is greater than or equal to GPRrt, then take
a Trap exception.

The contents of thecodefield are ignored by hardware and may be used to encode information for system soft
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] ≥ GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TGE

110000

6 5 5 10 6

Trap if Greater or Equal TGE
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 307

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions
TGEI

Format: TGEI rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs ≥ immediate then Trap

Compare the contents of GPRrs and the 16-bit signedimmediateas signed integers; if GPRrs is greater than or equal
to immediate, then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] ≥ sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TGEI

01000
immediate

6 5 5 16

Trap if Greater or Equal Immediate TGEI
308 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

argest
-32767,
TGEIU

Format: TGEIU rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs ≥ immediate then Trap

Compare the contents of GPRrs and the 16-bit sign-extendedimmediateas unsigned integers; if GPRrs is greater
than or equal toimmediate, then take a Trap exception.

Because the 16-bitimmediateis sign-extended before comparison, the instruction can represent the smallest or l
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned
max_unsigned] end of the unsigned range.

Restrictions:

None

Operation:

if (0 || GPR[rs]) ≥ (0 || sign_extend(immediate)) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TGEIU

01001
immediate

6 5 5 16

Trap if Greater or Equal Immediate Unsigned TGEIU
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 309

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

ware.
TGEU

Format: TGEU rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: if rs ≥ rt then Trap

Compare the contents of GPRrs and GPRrt as unsigned integers; if GPRrs is greater than or equal to GPRrt, then
take a Trap exception.

The contents of thecodefield are ignored by hardware and may be used to encode information for system soft
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if (0 || GPR[rs]) ≥ (0 || GPR[rt]) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TGEU

110001

6 5 5 10 6

Trap if Greater or Equal Unsigned TGEU
310 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set
TLBP

Format: TLBP MIPS32

Purpose:

To find a matching entry in the TLB.

Description:

TheIndexregister is loaded with the address of the TLB entry whose contents match the contents of theEntryHi reg-
ister. If no TLB entry matches, the high-order bit of theIndex register is set.

Restrictions:

None

Operation:

Index ← 1 || UNPREDICTABLE31

for i in 0...TLBEntries-1
if ((TLB[i] VPN2 and not (TLB[i] Mask)) =

(EntryHi VPN2 and not (TLB[i] Mask))) and
((TLB[i] G = 1) or (TLB[i] ASID = EntryHi ASID))then
Index ← i

endif
endfor

Exceptions:

Coprocessor Unusable

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

TLBP

001000

6 1 19 6

Probe TLB for Matching Entry TLBP
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 311

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

to

ed

TLB
TLBR

Format: TLBR MIPS32

Purpose:

To read an entry from the TLB.

Description:

TheEntryHi, EntryLo0, EntryLo1, andPageMaskregisters are loaded with the contents of the TLB entry pointed
by the Index register. Note that the value written to theEntryHi, EntryLo0, andEntryLo1registers may be different
from that originally written to the TLB via these registers in that:

• The value returned in the G bit in both theEntryLo0 andEntryLo1 registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bits inEntryLo0 andEntryLo1 when
the TLB was written.

• The value returned in the ASID field of theEntryHi register is zero for those chips that implement a BAT-bas
MMU organization.

Restrictions:

The operation isUNDEFINED if the contents of the Index register are greater than or equal to the number of
entries in the processor.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

TLBR

000001

6 1 19 6

Read Indexed TLB Entry TLBR
312 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set
Operation:

i ← Index
if i > (TLBEntries - 1) then

UNDEFINED
endif
PageMaskMask ← TLB[i] Mask
EntryHi ←

TLB[i] VPN2 ||
05 || TLB[i] ASID

EntryLo1 ← 0 2 ||
TLB[i] PFN1 ||
TLB[i] C1 || TLB[i] D1 || TLB[i] V1 || TLB[i] G

EntryLo0 ← 0 2 ||
TLB[i] PFN0 ||
TLB[i] C0 || TLB[i] D0 || TLB[i] V0 || TLB[i] G

Exceptions:

Coprocessor Unusable

Read Indexed TLB Entry TLBR
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 313

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

TLB
TLBWI

Format: TLBWI MIPS32

Purpose:

To write a TLB entry indexed by theIndex register.

Description:

The TLB entry pointed to by the Index register is written from the contents of theEntryHi, EntryLo0, EntryLo1, and
PageMaskregisters. The information written to the TLB entry may be different from that in theEntryHi, EntryLo0,
andEntryLo1 registers, in that:

• The single G bit in the TLB entry is set from the logical AND of the G bits in theEntryLo0 andEntryLo1
registers.

Restrictions:

The operation isUNDEFINED if the contents of the Index register are greater than or equal to the number of
entries in the processor.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

TLBWI

000010

6 1 19 6

Write Indexed TLB Entry TLBWI
314 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set
Operation:

i ← Index
TLB[i] Mask ← PageMaskMask
TLB[i] VPN2 ← EntryHi VPN2
TLB[i] ASID ← EntryHi ASID
TLB[i] G ← EntryLo1 G and EntryLo0 G
TLB[i] PFN1 ← EntryLo1 PFN
TLB[i] C1 ← EntryLo1 C
TLB[i] D1 ← EntryLo1 D
TLB[i] V1 ← EntryLo1 V
TLB[i] PFN0 ← EntryLo0 PFN
TLB[i] C0 ← EntryLo0 C
TLB[i] D0 ← EntryLo0 D
TLB[i] V0 ← EntryLo0 V

Exceptions:

Coprocessor Unusable

Write Indexed TLB Entry TLBWI
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 315

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

TLB
TLBWR

Format: TLBWR MIPS32

Purpose:

To write a TLB entry indexed by theRandom register.

Description:

The TLB entry pointed to by theRandomregister is written from the contents of theEntryHi, EntryLo0, EntryLo1,
and PageMaskregisters. The information written to the TLB entry may be different from that in theEntryHi,
EntryLo0, andEntryLo1 registers, in that:

• The value returned in the G bit in both theEntryLo0 andEntryLo1 registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bits inEntryLo0 andEntryLo1 when
the TLB was written.

Restrictions:

The operation isUNDEFINED if the contents of the Index register are greater than or equal to the number of
entries in the processor.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

TLBWR

000110

6 1 19 6

Write Random TLB Entry TLBWR
316 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set
Operation:

i ← Random
TLB[i] Mask ← PageMaskMask
TLB[i] VPN2 ← EntryHi VPN2
TLB[i] ASID ← EntryHi ASID
TLB[i] G ← EntryLo1 G and EntryLo0 G
TLB[i] PFN1 ← EntryLo1 PFN
TLB[i] C1 ← EntryLo1 C
TLB[i] D1 ← EntryLo1 D
TLB[i] V1 ← EntryLo1 V
TLB[i] PFN0 ← EntryLo0 PFN
TLB[i] C0 ← EntryLo0 C
TLB[i] D0 ← EntryLo0 D
TLB[i] V0 ← EntryLo0 V

Exceptions:

Coprocessor Unusable

Write Random TLB Entry TLBWR
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 317

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

ware.
TLT

Format: TLT rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: if rs < rt then Trap

Compare the contents of GPRrs and GPRrt as signed integers; if GPRrs is less than GPRrt, then take a Trap excep-
tion.

The contents of thecodefield are ignored by hardware and may be used to encode information for system soft
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] < GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TLT

110010

6 5 5 10 6

Trap if Less Than TLT
318 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set
TLTI

Format: TLTI rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs < immediate then Trap

Compare the contents of GPRrs and the 16-bit signedimmediateas signed integers; if GPRrs is less thanimmediate,
then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] < sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TLTI

01010
immediate

6 5 5 16

Trap if Less Than Immediate TLTI
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 319

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

argest
-32767,
TLTIU

Format: TLTIU rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs < immediate then Trap

Compare the contents of GPRrs and the 16-bit sign-extendedimmediateas unsigned integers; if GPRrs is less than
immediate, then take a Trap exception.

Because the 16-bitimmediateis sign-extended before comparison, the instruction can represent the smallest or l
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned
max_unsigned] end of the unsigned range.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TLTIU

01011
immediate

6 5 5 16

Trap if Less Than Immediate Unsigned TLTIU
320 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set

ware.
TLTU

Format: TLTU rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: if rs < rt then Trap

Compare the contents of GPRrs and GPRrt as unsigned integers; if GPRrs is less than GPRrt, then take a Trap
exception.

The contents of thecodefield are ignored by hardware and may be used to encode information for system soft
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || GPR[rt]) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TLTU

110011

6 5 5 10 6

Trap if Less Than Unsigned TLTU
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 321

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

ware.
TNE

Format: TNE rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: i f rs ≠ rt then Trap

Compare the contents of GPRrs and GPRrt as signed integers; if GPRrs is not equal to GPRrt, then take a Trap
exception.

The contents of thecodefield are ignored by hardware and may be used to encode information for system soft
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] ≠ GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TNE

110110

6 5 5 10 6

Trap if Not Equal TNE
322 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set
TNEI

Format: TNEI rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs ≠ immediate then Trap

Compare the contents of GPRrs and the 16-bit signedimmediateas signed integers; if GPRrs is not equal toimme-
diate, then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] ≠ sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TNEI

01110
immediate

6 5 5 16

Trap if Not Equal TNEI
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 323

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

sts are
eset) is
s do

a

WAIT

Format: WAIT MIPS32

Purpose:

Wait for Event

Description:

The WAIT instruction forces the core into low power mode. The pipeline is stalled and when all external reque
completed, the processor’s main clock is stopped. The processor will restart when reset (SI_Reset ro SI_ColdR
signaled, or a non-masked interrupt is taken (SI_NMI, SI_Int, or EJ_DINT). Note that the 4Kc, 4Kp & 4Km core
not use the code field in this instruction.

Restrictions:

The operation of the processor isUNDEFINED if a WAIT instruction is placed in the delay slot of a branch or
jump.

31 26 25 24 6 5 0

COP0

010000

CO

1
Implementation-Dependent Code

WAIT

100000

6 1 19 6

Enter Standby Mode WAIT
324 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set
Operation:

Enter lower power mode

Exceptions:

Coprocessor Unusable Exception

Enter Standby Mode (cont.) WAIT
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 325

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

to
XOR

Format: XOR rd, rs, rt MIPS32

Purpose:

To do a bitwise logical Exclusive OR

Description: rd ← rs XOR rt

Combine the contents of GPRrs and GPRrt in a bitwise logical Exclusive OR operation and place the result in
GPRrd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] xor GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

XOR

100110

6 5 5 5 5 6

Exclusive OR XOR
326 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

11.5 Instruction Set
XORI

Format: XORI rt, rs, immediate MIPS32

Purpose:

To do a bitwise logical Exclusive OR with a constant

Description: rt ← rs XOR immediate

Combine the contents of GPRrs and the 16-bit zero-extendedimmediatein a bitwise logical Exclusive OR operation
and place the result into GPRrt.

Restrictions:

None

Operation:

GPR[rt] ← GPR[rs] xor zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

XORI

001110
rs rt immediate

6 5 5 16

Exclusive OR Immediate XORI
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 327

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Chapter 11 MIPS32 4K Processor Core Instructions
328 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Appendix A

Revision History

Revision Date Description

1.0 August, 1999 • First released version

1.1 November, 1999

• Re-organization to be more of a SoftWare User’s Manual.
Removed System Interface chapter.

• Count register no longer stops incrementing in DebugMode -
New bit added to Debug register to indicate this: CountDM

• New Bits added to Debug register for handling of imprecise
exceptions: IEXI, DBusEP, IBusEP

• Added description of SubBlock ordering

• New MDU timing. Updated pipeline diagrams and text in Chap.
2 to reflect new timing

• Modified Reset description. SoftReset cannot be masked by the
core. SoftReset does not need to be asserted when Reset is
asserted

• ASID is not used in EJTAG breakpoint comparisons if the TLB
is not implemented

• Added MT Compare to Timer Interrupt cleared to list of Hazard
conditions

• Fixed Hazard from setting of SW Interrupt to Interrupted
instruction

• Changed SPECIAL opcode map to reflect MOVCI FP instn as a
Coprocessor Instn rather than a Reserved Instn

• L2 Cache encodings of CACHE instn are reserved.

• Added note that I Fill CACHE instn will cause a re-fetch even if
the line is in the cache

• MUL instn description reiterates that the contents of HI/LO are
unpredictable after the MUL operation.

• Added ERL=1 as possible reason for being in kernel mode in the
kseg descriptions

• Swapped priority of RI and CU exceptions

• Changed general exception code pseudo-code to have correct
vector offset of 0x180

• Fixed typo in bus error description: stores OR non-critical
words... not stores of non-critical words

• Changed TLBWI to TLBWR in Random register description

• Added note that behavior is undefined if illegal page mask value
is used

• Added note that StatusTS, StatusSR, and StatusNMI bits and
CauseWP cannot be set by software

• Noted undefined behavior if StatusERL is set while executing
code in useg/kuseg

• Added Config1PC and Config1CA bits. Both wired to 0
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 329

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Appendix A Revision History
1.1, continue November, 1999

• Changed Reset state of WatchI, WatchR, and WatchW to 0 from
undefined

• Removed some false statements about WAIT induced sleep mode

• CLO/CLZ instn description changed to reflect use of rd as
destination register instead of rt

• Add sel field to format statements in MFC0/MTC0 instns

• Removed redundant statement about writeback invalidate from
PREF instn

• Add programming note to multiply instructions that smaller
source value should be placed in rt

• Updated listing of HW initialized Cop0 bits in Reset chapter

1.2 December, 1999 • Removed implication of internal mux for SI_TimerInt from
description of Compare register

01.03 January 28, 2000

• Cleaned up old references to ‘both’ cores

• Fixed some typos

• Fixed pipe stages in figure 2-12

• Added details on D-side micro TLB

• Cleaned up usage of trademarks

• Renamed title toMIPS32 4k™ Processor Core Family Software
User’s Manual

• Changed revision numbering to xx.yy format for consistency
with other documents

01.04 March 23, 2000

• Cleaned up some old paragraph leftovers

• Changed look of Table of Contents, List of Figures and List of
Tables

• Added timing information regarding Early In to divide algorithm
for 4Kc and 4Km

• Fixed CLO/CLZ description in section 10.7 to reflect rt -> rd
change in definition

• Cleaned up Config register definition. Defined BM field, defined
reset state of several fields. Changed reserved fields to 0 fields

• Cleaned up decode tables - fixed font problems and multi-line
instn text

• Updated PREF description

• Made reset state of StatusRP0

• Fixed some Spell-check issues.

01.05 May 8, 2000

• Clarified “Fetch and Lock” CACHE description.

• Removed text saying that the upper bits of PrID were available
for implementors.

01.06 June 8, 2000
• Rephrased field description of DataLo register.

• Updated copyright and trademark notices.

01.07 June 19, 2000 • Clarified initialization of Status.RP and WatchLo.{I,R,W} bits
during Cold Reset in Chapters 4 and 5.

Revision Date Description
330 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

01.08 July 18, 2000

• Added bit numbering toTable 10-1 on page 163 describing the
active bytes in various access types

• Reformatted Cover sheet, added MD #

• Removed PrID column from this table

01.09 October 27, 2000

• Corrected PrRst bit in EJTAG Control Register to control
EJ_PrRst pin (was EJ_PerRst pin).

• Clarified use ofSI_Reset input in the Soft Reset description.

• Clarified effective address calculation in the description of the
CACHE instruction.

• Small wording updates in the entire document.

• Added Scratch Pad bullet in Feature list.

• Added Multiply/divide bullet for 4Kp core in Feature list.

• Added Data-bypass section to Pipeline chapter.

• Added abbreviation explanation toFigure 2-1Figure 2-2Figure
2-3.

• Corrected latency numbers for Divide inTable 2-1.

• ModifiedFigure 2-8, to make it more obvious what goes on.

• Corrected clock numbers for divide inFigure 2-11, Figure 2-12
andFigure 2-13.

• Re-arrangedChapter 3, “Memory Management,” on page 29.
Modes of operation is moved first, and JTLB entry contents is
now included in the TLB translation section.

• Changed SR to Status when CP0 Status register was referenced
in Chapter 4, “Exceptions.”

• Changed some references from “instruction” to “data” in the data
breakpoint section ofChapter 9, “EJTAG Debug Support.”

• Moved instruction Hazard section fromChapter 11, “MIPS32 4K
Processor Core Instructions,” to Chapter 2, “Pipeline.”

• Changed all references of Block Address Translation (BAT) to
Fixed Mapping (FM) for consistency with other MIPS
documents.

01.10 October 31, 2000 • Converted document to new template.

01.11 December 4, 2000

• Fixed typo in opcodeTable 11-4 on page 178 (MUTLU ->
MULTU).

• Changed MFCz/MTCz inTable 11-7 on page 179 to
MFC0/MTC0.

01.12 January 3, 2001 • Made CountDM bit in Debug register read/write, so software can
control whether Count register increments in Debug Mode.

01.13 March 3, 2001
• Miscellaneous minor text tweaks based on review feedback.

• Tagged source to make core specific document.

Revision Date Description
MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15 331

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

Appendix A Revision History
01.14 June 20, 2001

• Fixed some core specific tagging.

• Updated to document template revision 01.04

• Updated the instruction descriptions from the Architecture
Manual.

• Added missing footnote inTable 2-6 on page 26.

• Fixed typo in description of LSNM field inTable 5-26 on page
100.

• Correct name of ASIDsup field in IBS (Table 9-7 on page 129)
and DBS (Table 9-13 on page 135) registers.

• Correct name of ASIDuse field in IBCn (Table 9-11 on page 133)
and DBCn (Table 9-17 on page 139) registers.

• Updated reset state of Doze and Halt bits in EJTAG Control
register (Table 9-23 on page 151).

• First collom in sub-table for Psz field is changed from PA to PAA
(Table 9-23 on page 151).

• Added a better Restriction example (Section 11.1.6,
"Restrictions Field" on page 170).

• Added B, BAL and NOP to list of instructions (Table 11-9 on
page 179).

• In functions fields for LWL, LWR, SWL, SWR, SYNC, TLBWI,
TLBWR, TLBP and TLBR. Pointed reader to see instruction
description (Table 11-9 on page 179).

01.15 September 25, 2001• Added details on new core features - Index Store Data CACHE
instn, ErrCtl Cop0 register, EJTAG FASTDATA instruction

Revision Date Description
332 MIPS32 4K™ Processor Core Family Software User’s Manual, Revision 01.15

Copyright © 1998-2001 MIPS Technologies Inc. All right reserved.

	MIPS32 4K™ Processor Core Family Software User’s Manual
	Table of Contents
	List of Figures
	List of Tables
	Introduction to the MIPS32 4K™ Processor Core Family
	1.1� Features
	1.2� Block Diagram
	1.3� Required Logic Blocks
	1.3.1� Execution Unit
	1.3.2� Multiply/Divide Unit (MDU)
	1.3.3� System Control Coprocessor (CP0)
	1.3.4� Memory Management Unit (MMU)
	1.3.5� Cache Controllers
	1.3.6� Bus Interface Unit (BIU)
	1.3.7� Power Management

	1.4� Optional Logic Blocks
	1.4.1� Instruction Cache
	1.4.2� Data Cache
	1.4.3� EJTAG Controller

	Pipeline
	2.1� Pipeline Stages
	2.1.1� I Stage: Instruction Fetch
	2.1.2� E Stage: Execution
	2.1.3� M Stage: Memory Fetch
	2.1.4� A Stage: Align/Accumulate
	2.1.5� W Stage: Writeback

	2.2� Instruction Cache Miss
	2.3� Data Cache Miss
	2.4� Multiply/Divide Operations
	2.5� MDU Pipeline (4Kc and 4Km Cores)
	2.5.1� 32x16 Multiply (4Kc and 4Km Cores)
	2.5.2� 32x32 Multiply (4Kc and 4Km Cores)
	2.5.3� Divide (4Kc and 4Km Cores)

	2.6� MDU Pipeline (4Kp Core Only)
	2.6.1� Multiply (4Kp Core)
	2.6.2� Multiply Accumulate (4Kp Core)
	2.6.3� Divide (4Kp Core)

	2.7� Branch Delay
	2.8� Data Bypassing
	2.8.1� Load Delay
	2.8.2� Move from HI/LO and CP0 Delay

	2.9� Interlock Handling
	2.10� Slip Conditions
	2.11� Instruction Interlocks
	2.12� Instruction Hazards

	Memory Management
	3.1� Introduction
	3.2� Modes of Operation
	3.2.1� Virtual Memory Segments
	3.2.1.1� Unmapped Segments
	3.2.1.2� Mapped Segments

	3.2.2� User Mode
	3.2.3� Kernel Mode
	3.2.3.1� Kernel Mode, User Space (kuseg)
	3.2.3.2� Kernel Mode, Kernel Space 0 (kseg0)
	3.2.3.3� Kernel Mode, Kernel Space 1 (kseg1)
	3.2.3.4� Kernel Mode, Kernel Space 2 (kseg2)
	3.2.3.5� Kernel Mode, Kernel Space 3 (kseg3)

	3.2.4� Debug Mode
	3.2.4.1� Conditions and Behavior for Access to drseg, EJTAG Registers
	3.2.4.2� Conditions and Behavior for Access to dmseg, EJTAG Memory

	3.3� Translation Lookaside Buffer (4Kc Core Only)
	3.3.1� Joint TLB
	3.3.2� Instruction TLB
	3.3.3� Data TLB

	3.4� Virtual to Physical Address Translation (4Kc Core)
	3.4.1� Hits, Misses, and Multiple Matches
	3.4.2� Page Sizes and Replacement Algorithm
	3.4.3� TLB Instructions

	3.5� Fixed Mapping MMU (4Km & 4Kp Cores)
	3.6� System Control Coprocessor

	Exceptions
	4.1� Exception Conditions
	4.2� Exception Priority
	4.3� Exception Vector Locations
	4.4� General Exception Processing
	4.5� Debug Exception Processing
	4.6� Exceptions
	4.6.1� Reset Exception
	4.6.2� Soft Reset Exception
	4.6.3� Debug Single Step Exception
	4.6.4� Debug Interrupt Exception
	4.6.5� Non-Maskable Interrupt (NMI) Exception
	4.6.6� Machine Check Exception (4Kc core)
	4.6.7� Interrupt Exception
	4.6.8� Debug Instruction Break Exception
	4.6.9� Watch Exception — Instruction Fetch or Data Access
	4.6.10� Address Error Exception — Instruction Fetch/Data Access
	4.6.11� TLB Refill Exception — Instruction Fetch or Data Access (4Kc core)
	4.6.12� TLB Invalid Exception — Instruction Fetch or Data Access (4Kc core)
	4.6.13� Bus Error Exception — Instruction Fetch or Data Access
	4.6.14� Debug Software Breakpoint Exception
	4.6.15� Execution Exception — System Call
	4.6.16� Execution Exception — Breakpoint
	4.6.17� Execution Exception — Reserved Instruction
	4.6.18� Execution Exception — Coprocessor Unusable
	4.6.19� Execution Exception — Integer Overflow
	4.6.20� Execution Exception — Trap
	4.6.21� Debug Data Break Exception
	4.6.22� TLB Modified Exception — Data Access (4Kc core)

	4.7� Exception Handling and Servicing Flowcharts

	CP0 Registers
	5.1� CP0 Register Summary
	5.2� CP0 Registers
	5.2.1� Index Register (CP0 Register 0, Select 0)
	5.2.2� Random Register (CP0 Register 1, Select 0)
	5.2.3� EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)
	5.2.4� Context Register (CP0 Register 4, Select 0)
	5.2.5� PageMask Register (CP0 Register 5, Select 0)
	5.2.6� Wired Register (CP0 Register 6, Select 0)
	5.2.7� BadVAddr Register (CP0 Register 8, Select 0)
	5.2.8� Count Register (CP0 Register 9, Select 0)
	5.2.9� EntryHi Register (CP0 Register 10, Select 0)
	5.2.10� Compare Register (CP0 Register 11, Select 0)
	5.2.11� Status Register (CP0 Register 12, Select 0)
	5.2.12� Cause Register (CP0 Register 13, Select 0)
	5.2.13� Exception Program Counter (CP0 Register 14, Select 0)
	5.2.14� Processor Identification (CP0 Register 15, Select 0)
	5.2.15� Config Register (CP0 Register 16, Select 0)
	5.2.16� Config1 Register (CP0 Register 16, Select 1)
	5.2.17� Load Linked Address (CP0 Register 17, Select 0)
	5.2.18� WatchLo Register (CP0 Register 18)
	5.2.19� WatchHi Register (CP0 Register 19)
	5.2.20� Debug Register (CP0 Register 23)
	5.2.21� Debug Exception Program Counter Register (CP0 Register 24)
	5.2.22� ErrCtl Register (CP0 Register 26, Select 0)
	5.2.23� TagLo Register (CP0 Register 28, Select 0)
	5.2.24� DataLo Register (CP0 Register 28, Select 1)
	5.2.25� ErrorEPC (CP0 Register 30, Select 0)
	5.2.26� DeSave Register (CP0 Register 31)

	Hardware and Software Initialization
	6.1� Hardware Initialized Processor State
	6.1.1� Coprocessor Zero State
	6.1.2� TLB Initialization (4Kc core only)
	6.1.3� Bus State Machines
	6.1.4� Static Configuration Inputs
	6.1.5� Fetch Address

	6.2� Software Initialized Processor State
	6.2.1� Register File
	6.2.2� TLB (4Kc Core Only)
	6.2.3� Caches
	6.2.4� Coprocessor Zero state

	Caches
	7.1� Introduction
	7.2� Cache Protocols
	7.2.1� Cache Organization
	7.2.2� Cacheability Attributes
	7.2.3� Replacement Policy

	7.3� Instruction Cache
	7.4� Data Cache
	7.5� Memory Coherence Issues

	Power Management
	8.1� Register-Controlled Power Management
	8.2� Instruction-Controlled Power Management

	EJTAG Debug Support
	9.1� Debug Control Register
	9.2� Hardware Breakpoints
	9.2.1� Features of Instruction Breakpoint
	9.2.2� Features of Data Breakpoint
	9.2.3� Overview of Registers for Instruction Breakpoints
	9.2.4� Registers for Data Breakpoint Setup
	9.2.5� Conditions for Matching Breakpoints
	9.2.5.1� Conditions for Matching Instruction Breakpoint
	9.2.5.2� Conditions for Matching Data Breakpoints

	9.2.6� Debug Exceptions from Breakpoints
	9.2.6.1� Debug Exception by Instruction Breakpoint
	9.2.6.2� Debug Exception by Data Breakpoint

	9.2.7� Breakpoint used as Triggerpoint
	9.2.8� Instruction Breakpoint Registers
	9.2.8.1� Instruction Breakpoint Status (IBS) Register
	9.2.8.2� Instruction Breakpoint Address n (IBAn) Register
	9.2.8.3� Instruction Breakpoint Address Mask n (IBMn) Register
	9.2.8.4� Instruction Breakpoint ASID n (IBASIDn) Register
	9.2.8.5� Instruction Breakpoint Control n (IBCn) Register

	9.2.9� Data Breakpoint Registers
	9.2.9.1� Data Breakpoint Status (DBS) Register
	9.2.9.2� Data Breakpoint Address n (DBAn) Register
	9.2.9.3� Data Breakpoint Address Mask n (DBMn) Register
	9.2.9.4� Data Breakpoint ASID n (DBASIDn) Register
	9.2.9.5� Data Breakpoint Control n (DBCn) Register
	9.2.9.6� Data Breakpoint Value n (DBVn) Register

	9.3� Test Access Port (TAP)
	9.3.1� EJTAG Internal and External Interfaces
	9.3.2� Test Access Port Operation
	9.3.2.1� Test-Logic-Reset State
	9.3.2.2� Run-Test/Idle State
	9.3.2.3� Select_DR_Scan State
	9.3.2.4� Select_IR_Scan State
	9.3.2.5� Capture_DR State
	9.3.2.6� Shift_DR State
	9.3.2.7� Exit1_DR State
	9.3.2.8� Pause_DR State
	9.3.2.9� Exit2_DR State
	9.3.2.10� Update_DR State
	9.3.2.11� Capture_IR State
	9.3.2.12� Shift_IR State
	9.3.2.13� Exit1_IR State
	9.3.2.14� Pause_IR State
	9.3.2.15� Exit2_IR State
	9.3.2.16� Update_IR State

	9.3.3� Test Access Port (TAP) Instructions
	9.3.3.1� BYPASS Instruction
	9.3.3.2� IDCODE Instruction
	9.3.3.3� IMPCODE Instruction
	9.3.3.4� ADDRESS Instruction
	9.3.3.5� DATA Instruction
	9.3.3.6� CONTROL Instruction
	9.3.3.7� ALL Instruction
	9.3.3.8� EJTAGBOOT Instruction
	9.3.3.9� NORMALBOOT Instruction
	9.3.3.10� FASTDATA Instruction

	9.4� EJTAG TAP Registers
	9.4.1� Instruction Register
	9.4.2� Data Registers Overview
	9.4.2.1� Bypass Register
	9.4.2.2� Device Identification (ID) Register
	9.4.2.3� Implementation Register
	9.4.2.4� EJTAG Control Register

	9.4.3� Processor Access Address Register
	9.4.3.1� Processor Access Data Register

	9.4.4� Fastdata Register (TAP Instruction FASTDATA)

	9.5� Processor Accesses
	9.5.1� Fetch/Load and Store from/to the EJTAG Probe through dmseg

	Instruction Set Overview
	10.1� CPU Instruction Formats
	10.2� Load and Store Instructions
	10.2.1� Scheduling a Load Delay Slot
	10.2.2� Defining Access Types

	10.3� Computational Instructions
	10.3.1� Cycle Timing for Multiply and Divide Instructions

	10.4� Jump and Branch Instructions
	10.4.1� Overview of Jump Instructions
	10.4.2� Overview of Branch Instructions

	10.5� Control Instructions
	10.6� Coprocessor Instructions
	10.7� Enhancements to the MIPS Architecture
	10.7.1� CLO - Count Leading Ones
	10.7.2� CLZ - Count Leading Zeros
	10.7.3� MADD - Multiply and Add Word
	10.7.4� MADDU - Multiply and Add Unsigned Word
	10.7.5� MSUB - Multiply and Subtract Word
	10.7.6� MSUBU - Multiply and Subtract Unsigned Word
	10.7.7� MUL - Multiply Word
	10.7.8� SSNOP- Superscalar Inhibit NOP

	MIPS32 4K Processor Core Instructions
	11.1� Understanding the Instruction Fields
	11.1.1� Instruction Fields
	11.1.2� Instruction Descriptive Name and Mnemonic
	11.1.3� Format Field
	11.1.4� Purpose Field
	11.1.5� Description Field
	11.1.6� Restrictions Field
	11.1.7� Operation Field
	11.1.8� Exceptions Field
	11.1.9� Programming Notes and Implementation Notes Fields

	11.2� Operation Section Notation and Functions
	11.2.1� Instruction Execution Ordering
	11.2.2� Special Symbols in Pseudocode Notation
	11.2.3� Pseudocode Functions
	11.2.3.1� Load Memory and Store Memory Functions
	11.2.3.2� Miscellaneous Functions

	11.3� Op and Function Subfield Notation
	11.4� CPU Opcode Map
	11.5� Instruction Set
	ADD
	ADDI
	ADDIU
	ADDU
	AND
	ANDI
	B
	BAL
	BEQ
	BEQL
	BGEZ
	BGEZAL
	BGEZALL
	BGEZL
	BGTZ
	BGTZL
	BLEZ
	BLEZL
	BLTZ
	BLTZAL
	BLTZALL
	BLTZL
	BNE
	BNEL
	BREAK
	CACHE
	CLO
	CLZ
	DERET
	DIV
	DIVU
	ERET
	J
	JAL
	JALR
	JR
	LB
	LBU
	LH
	LHU
	LL
	LUI
	LW
	LWL
	LWR
	MADD
	MADDU
	MFC0
	MFHI
	MFLO
	MOVN
	MOVZ
	MSUB
	MSUBU
	MTC0
	MTHI
	MTLO
	MUL
	MULT
	MULTU
	NOP
	NOR
	OR
	ORI
	PREF
	SB
	SC
	SDBBP
	SH
	SLL
	SLLV
	SLT
	SLTI
	SLTIU
	SLTU
	SRA
	SRAV
	SRL
	SRLV
	SSNOP
	SUB
	SUBU
	SW
	SWL
	SWR
	SYNC
	SYSCALL
	TEQ
	TEQI
	TGE
	TGEI
	TGEIU
	TGEU
	TLBP
	TLBR
	TLBWI
	TLBWR
	TLT
	TLTI
	TLTIU
	TLTU
	TNE
	TNEI
	WAIT
	XOR
	XORI

	Revision History

