
1

Co-simulation and Software Compilation Methodologies for
the System-on-a-Chip in Multimedia

Clifford Liem1,2, François Naçabal1,2, Carlos Valderrama1, Pierre Paulin2, Ahmed Jerraya1

1. Laboratoire TIMA, INPG (Institut National Polytechnique de Grenoble), Grenoble, France
2. Central R & D, SGS-Thomson Microelectronics, Crolles, France

Today’s fabrication technologies are allowing increasing functionality on a single chip. Conse-
quently, for complex consumer products like the SGS-Thomson single chip videophone [1],
new design and verification methods are needed to address the interfunctioning on-chip hard-
ware and software components. Complementing standard hardware practices, this article pre-
sents contributing techniques in hardware/software co-simulation and embedded software
compilation.

Introduction

With the advances of submicron technologies, designers are able to put impressive numbers
of components on a single microchip. Along with this capability, a vast choice of hardware and
software components make the design and validation of the system an increasingly complex
process. The SGS-Thomson series of videophone systems (e.g. STi1100 [1]) is an example of
a system-on-a-chip which is indicative of this design challenge. This system has required a re-
definition of design and functional validation methodologies from the standard ASIC (Applica-
tion Specific Integrated Circuit) design flow. Figure 1 shows the main operators of the
videophone system, which communicate through a set of busses.

Some of these operators are designed as fully hardwired blocks to meet the performance re-
quirements (e.g. the Motion Estimator [2]); however, to keep pace with the evolving standards,
many are designed as custom instruction-set processors or ASIPs (Application Specific In-

S interface

High-speed H/W:
DCT / inverse DCT,
Motion Estimator

D950 Core
Sound

Processor

MSQ :
Master

SeQuencer

Memory
Controller

Line I/F

Video
RAM

Host uP

Host
interface

S
 line

Glue LogicControl Bus

Data Bus

BSP :
Bit Stream
Processor

VIP :
VLIW Image
Processor

A/D & D/A

Figure 1: SGS-Thomson Single-Chip Videophone

= Embedded
Processor

= Fixed
Hardware

to appear in the IEEE Design & Test of Computers Magazine
for the special issue on “Design, Test, & ECAD in Europe”, 1997

2

struction-Set Processors). These are dedicated, low-cost embedded processor cores which
run software for their specialized task. With the constantly changing standards (e.g. H.261,
H.263), block functions in software allow for late design changes and modifications, which are
important in meeting the current market requirements.

In this system environment, two technologies are key to its success: hardware-software co-
simulation and embedded software compilation. For functional validation of the system, a hard-
ware-software co-simulation methodology is mandatory. The hardware of the system is written
in behavioural-level and RTL-level VHDL [3], while the software for the ASIPs is written in C.
Co-simulation is then needed for functional validation of this C-VHDL specification. Most VHDL
simulators provide a means to integrate C routines in a simulation; however, this type of simu-
lation is highly restrictive. It follows a master-slave co-simulation model allowing for a simple C
program to be called from a master VHDL simulation. It does not allow for co-simulation within
a distributed model, where several C programs are running in parallel. Moreover, it does not
allow the C program to be the master.

New communication techniques are beginning to appear to resolve these restrictions [4][5]. For
the videophone system, a C-VHDL co-simulation environment called CoSim [6] was developed
which imposes no restrictions on the type of C being simulated. It is based on the Unix IPC
(Inter Process Communication) utility and can model many intercommunicating processes at
one time. In addition, the methodology allows standard C debugging tools like dbx and gdb to
be used transparently. Thus, the user is free to debug VHDL and C all in the same simulation.

With a large proportion of the videophone function in software, an effective compilation meth-
odology is critical. The requirements for the compiler system is that it be easily retargetable to
a wide variety of processor architectures, from control-flow dominated architectures to data-
flow dominated architectures. It must adhere to strict hardware requirements like bus interface
protocols as well as handle architecture specialization. As well, since the system is real-time
reactive, performance overheads with respect to hand code cannot be tolerated.

The challenges of code generation for custom embedded processors has just recently sparked
the attention of the compiler community [8]. Solutions to the requirements of the videophone
system have been met through the development of software compilers for three of the proces-
sor blocks using the retargetable rule-driven approach in the FlexWare system [9]. This C com-
piler environment is a flexible and efficient means of providing a compiler for a variety of
architectures. The targeting time for each compiler was on the order of one person-month in-
cluding validation; and results have shown that there was no loss in code quality when com-
pared to hand code.

3

Design Methodologies for the Videophone Architecture

Prior Co-Design Methodology The design methodology for the current production chip
is outlined in Figure 2 and described in detail in [3]. Briefly, the approach begins with an explo-
ration and refinement of the C algorithms based on the models provided by the videotelephony
standards committees (H.261, H.263). The architecture is then defined by a coarse partitioning
onto software and hardware operators. VHDL models serve as the backbone simulation plane
on this behavioural level. These models are then manually rewritten on a register-transfer level
(RTL) for the hardware and as assembly code for the software. Commercial (RTL synthesis)
and public domain tools (assemblers/linkers) then offer a path to physical implementation in
the forms of netlists (hardware) and machine code (software).

Current Co-Design Methodology The current design methodology for the videophone is
shown in Figure 3. Compared to the prior design methodology, the first notable aspect is that
more function has moved from hardware to software. The reasons for this are many; however,
the foremost remains the added flexibility to track the evolving algorithmic standards. At late
design stages, software is much easier to modify than hardware, as long as each embedded
processor has the foreseen capabilities.

Rather than the manual translations to and from VHDL, the software specification language is
C, which requires fewer changes from the models provided by the standards groups. As a di-
rect consequence, C-VHDL co-simulation for functional validation with the rest of the hardware
system becomes an important component. In addition, software compilation to form a path to
implementation is equally important.

Although there are fewer hardwired components, these hardware operators are usually critical
components in other regards, for example, high speed, low power and low area. This drives
the advancements to higher level synthesis (Behavioural in addition to RTL) to improve not only
design time, but to make better high-level trade-offs (e.g. speed vs. area vs. power consump-
tion). Behavioural synthesis for the videophone is discussed in detail in [2].

VHDL model
HW Blocks

VHDL model
HW Behaviour

VHDL model
SW Behaviour

C Specification

Manual Translation
Manual Translation

Refinement

Register Transfer

Behavioural Level

Level (RTL)

& Partitioning

Assembly Code

VHDL model
Processor

Hardware Software

RTL Synthesis

Machine Code

VHDL Simulation

VHDL
Simulation

Figure 2: Prior Co-Design Methodology

4

Hardware-Software Co-simulation

Most commercial VHDL simulators provide a basic means to invoke C functions during VHDL
simulation; however, this approach imposes a fundamental constraint: the invocation of the C
function must always start from the same entry point, as shown in Figure 4a. This fits in well in
a master-slave communication model (Figure 4b), where the VHDL is the master that simply
calls slave C routines, awaiting a response from each call. However, a C program could be the
master of other hardware blocks (e.g. the MSQ), and therefore require multiple entry and exit
points (Figure 4c). A distributed communication model (Figure 4d) with no notion of master or
slave would alleviate this problem. In addition this model allows multiple C programs to run in
parallel.

The distributed model of Figure 4d can be realized using the Unix Inter-Process Communica-
tion (IPC) mechanism. In practice, the VHDL simulator capability to call a C function is still

VHDL model
HW Blocks

VHDL model
HW Behaviour

C model
SW Behaviour

C Specification

Behavioural Synthesis
Software Compilation

Refinement

Register Transfer

Behavioural Level

Level

& Partitioning

Assembly Code

Hardware Software

RTL Synthesis

Machine Code
VHDL model
Processor

Amical / Cathedral
FlexWare

VHDL-C Co-Simulation
CoSim

VHDL
Simulation

Figure 3: Current Co-Design Methodology

C
 c

al
l

C

VHDL

C

a. Single Entry C code c. Multiple Entry C code

C-VHDL interaction
C control flow

VHDL
VHDL C

b. Master-Slave Model

C
 c

al
l

VHDL

C

C

C
o

m
m

u
n

ic
at

io
n

 B
u

s

d. Distributed Model

Figure 4: VHDL-C communication

5

used; however, that C function contains only the protocol to address IPC messages. This so-
lution allows the designer to keep the C application code in its original form.

The key point in this methodology is the encapsulation of the IPC communication layers and
the VHDL-C interface function call. This setup can be cumbersome, especially when repeated
for several processors. Experiments conducted in this project showed that about 500 lines of
C code were a minimum to implement an IPC-based mechanism. This motivated the develop-
ment of CoSim: a tool which automatically generates these layers. Through a set of configura-
tion options, this utility has been made flexible enough to suit a wide range of processor
interfaces.

For a given C program, CoSim generates all the application-specific code, and links it with IPC
and the VHDL- C interface libraries (Figure 5). The communication can then be performed
through a single function named io_transaction().

When the generation of the communication layer is complete, the tool runs the VHDL simulator
and the C program, automatically managing the IPC communication. An additional feature is
that standard C debuggers can be used for co-simulation of C code with VHDL. This is not sup-
ported by commercial tools.

In systems with multiple processors like the videophone, CoSim generates one communication
layer for each C application. To date, we have run a maximum of three C processes with VHDL
without hitting any performance problems. The only obstacle we can envision for this method-
ology is a practical limit to the number of IPC communication channels which may run concur-
rently on UNIX platforms; however, we have not yet run experiments to determine this limit.

Implementation The generation of the C-VHDL interface is done through a process known
as VCI (VHDL-C Interface)[7], shown in Figure 6. VCI is driven by a parameterized interface
specification. This specification is created by a parsing of the VHDL entity to determine the
communicating functions to C. The output of VCI is a set of VHDL and C files needed to inter-
connect the C-program to the VHDL structure during co-simulation. (It is worth noting that the
tool can alternatively be used to generate the interconnection between C modules only.)

The C functions communicate with the VHDL simulator by means of the provision for externally
callable languages (e.g. Synopsys VSS CLI, Cadence Leapfrog FMI). This information is con-

io_transaction()

ANSI C:
application

code

VHDL:
H/W

IPC UNIX

RdWr

Process1 Process2

VHDL
dbx

C
dbx

CoSim

Cosim entity

VCI
Generator

io_transaction()

RdWr

IPC

C-IPCVHDL-IPC

ANSI C:
application

code

RdWr

io_transaction()

C-IPC

IPC
Process n

VCI = VHDL-C Interface
IPC = Inter Process Communication

Figure 5: IPC-based C-VHDL co-simulation

6

tained in the VHDL Simulator Library. A second library containing Unix IPC calling functions
completes the information necessary to produce the VHDL-C link.

Communication between a VHDL process and a C executable is established by means of a
single bidirectional message queue [4]. Information exchanged between the two parts contains
the values for all the signals in the interface. For message-based communication, a synchro-
nous half-duplex protocol is used. It is based on the continuous exchange of updates. A token
represents each update, which allows the receiver to respond at a step following the send of
the token. After sending a token, the sender is not permitted to emit another token before re-
ceiving one. This does not restrict the communication in any way, but rather, guarantees the
synchronization of events.

Synchronization between C and VHDL is performed with an evaluation clock derived from the
master clock. The transfer is done alternatively on each edge as shown in Figure 7. The mech-
anism also insures that one event and only one can be delivered to the C or to the VHDL at a
time. No message overflow is allowed.

VHDL
structure

C
algorithm

C
debugger

IPC
channel

VHDL
debugger

VHDL
executable

C
executable

VCI
interface

VHDL
analyzer

VCI
generator

IPC
library

C
compiler

VHDL-C Co-simulation

C-VHDL
I/O

functions

description

Other
Cadence
Synopsys

VHDL Simulator
Library

Figure 6: VHDL-C Interface (VCI) generation

VHDL

Message from VHDL to C

Message from C to VHDL
Wait state

VHDL stop

VHDL

C

VHDL running

C running

CLK_EVAL

Figure 7: C - VHDL synchronization

7

Co-simulation Results In Figure 8, we compare C-VHDL co-simulation with simulation
entirely in VHDL (RTL model of the target processor with the program loaded in ROM). We
show results for the VIP (shown in Figure 1) with a number of different examples chosen from
both the H.261 and H.263 recommendations. The simulation runtime is defined as follows:

• for the C-VHDL co-simulation: the time spent to run the compiled C algorithm (including the
IPC communication) plus the time spent to simulate the rest of the system in VHDL;

• for the RTL simulation: the runtime of the VHDL simulator (model of the target processor
and its environment).

This experiment has been done for six different algorithms. Figure 8 shows the comparison be-
tween the runtime (Y-axis) of co-simulation (dark gray bars) and the runtime of VHDL-only sim-
ulation (light gray bars), obtained for the different algorithms (on the X-axis, ordered by growing
complexity).

The co-simulation is always faster than the RTL simulation, and the speed-up ratio increases
with the complexity of the algorithms. In the most complex example, there is nearly a three-fold
improvement in simulation time. Two reasons can explain these results:

• the VHDL simulator spends a lot of time simulating the behaviour of the processor for each
machine assembly instruction; whereas, in C-VHDL co-simulation, the C is compiled to the
workstation; and therefore, a small set of assembly instructions are simply executed on the
workstation;

• the additional time required by the IPC communication is more than offset by the simulation
speedup of the C versus the assembly running on the VHDL-RTL model.

In summary, the CoSim tool has provided the ability to functionally validate the communication
between the components of the videophone system. In addition to the capability to write at a
higher algorithmic level (C), simulation time has decreased when compared to pure VHDL sim-
ulation.

Simulation time

0

CoSim: C-VHDL co-simulation
VHDL-only simulation (RTL)

40 min

Algorithm complexity

CoSim

VHDL-RTL

13 min

37 min

10 min

20 min

30 min

Figure 8: Co-simulation Results

8

Embedded Software Compilation

The SGS-Thomson videophone contains a collection of very different embedded processor ar-
chitectures ranging from control-flow oriented (the MSQ) to data-flow oriented (the
VIP). Typically, compilers built for general computing environments are highly optimized for
one sole target processor. In being built in this fashion, they are often rigid in functionality and
suffer from low retargetability. A new style of architecture cannot be easily accommodated, as
there is little flexibility in the steps of the compilation. A method supporting retargetability needs
to have flexibility at each step in the compilation process.

Compilation Techniques Traditionally, a compiler is built as a succession of refinement
steps as shown in Figure 9a. While this is successful for many general-computing architec-
tures, retargetability is often restricted to the back-end code generation phase. This can mean
that optimizations are not driven by the architecture characteristics. Furthermore, in the case
of embedded processors, architecture idiosyncracies like heterogeneous register files and spe-
cial-purpose hardware functions cannot be handled.

Figure 9b and c depict recent approaches to compilation for embedded processors [8]. In these
approaches, information of the processor architecture drives the succession of the compilation
steps. This feature is essential for embedded processors, where the architecture characteris-
tics are unlike standard microprocessors. Processors for real-time reactive systems often con-
tain a limited number of registers which are specialized for certain functions, as well as
encoded instruction words, and special functions to communicate with the rest of the system.
The compiler task of mapping onto these functions requires special attention.

Rule-driven Compilation This approach to compilation was first presented by Gurd in
[10]. It is based on step-wise progressive refinement and provides a programming environment
for compiler development. The compilation process is divided into four main phases, which are
shown by example in Figure 10.

1. Virtual code selection. The developer defines a virtual machine which resembles in func-
tionality the instruction-set of the real machine, but is sequential in operation. Those proces-

Source Code

Machine Code

Assembly & Linking

Syntax / Semantic Analysis

Intermediate Form

Optimizations

Code Generation

Source Code

Machine Code

Assembly & Linking

Code Selection

Optimizations

Compaction

Virtual Machine

Map to Target

Processor
Retargeting
Rules

Source Code

Machine Code

Assembly & Linking

Optimizations

Control & Data Flow

Processor
ModelScheduling / Compaction

Register Allocation

Instruction Selection

a. Traditional Compilation b. Rule-driven Compilation c. Model-based Compilation

Graph

Figure 9: Compilation Techniques

9

sors with parallel execution streams would be simplified to one stream. The virtual machine
description contains two main parts: 1) a description of resources including register sets and
addressing modes, and 2) a set of code selection rules.

The definition of the available register sets classifies these resources into functional cate-
gories. For example, it indicates which C data-types each register may hold. The definition
of the addressing modes indicates the manner in which variables are to be retrieved from
memory.

For the code selection rules, the developer defines the mapping between the C code onto
the virtual machine instruction set. For each operation which may occur, the developer pro-
vides a rule which is defined in a programming language. This rule will be triggered upon
matches to the source code and executed at compile time. This approach allows the devel-
oper to provide simple rules for the most common cases and more complex mappings for
special features of the architecture. For example, the developer may restrict the use of cer-
tain registers whose function are constrained by the architecture. This is important to sup-
port special-purpose registers which are often found in embedded processors. Register
assignment within register sets is performed after code selection using a coloring approach.
This is done in a manner which satisfies the constraints imposed by selection rules.

2. Optimizations. Instructions for the virtual machine may be passed to a series of optimiza-
tion routines, such as a peephole optimizer, which transforms sequential occurrences of op-
erations into more efficient operations through simple replacements. The user indicates a
source and target sequence of code using keywords and wildcards. As the transformations
are activated recursively, the code may significantly be improved. At this point in the com-
pilation, it is also easy to add custom optimization sequences, since the input is very well
defined. This was done in the definition of the virtual machine. For example, a data-routing
optimizer may be inserted to determine the best movement of data through the machine,
given the structural connectivity of the hardware.

Figure 10: Rule-driven Compilation Example

*p++

2

ADDI R1,1,R2

LSHIFT R2,2,R2

STR_PINC R2,AX1

SUB R0,R1,R2

Code Selection Rules

Target Mapping Rules
<<

=

=

1

+

b

c

ADDI_LSH R1,1,2,R2

STR_PINC R2,AX1

SUB R0,R1,R2

INC_LSH R1,2,R2

ST_PINC R2,AX1

SUB R0,R1,R2

INC_LSH R1,2,R2

ST_PINC R2,AX1 SUB R0,R1,R2

*p++=(b + 1) << 2;

c = a - b;

0001 0110 0000 0000

0110 1111 0110 1100

C source code

Machine
Code

Optimization Rules

Compaction Resources

b

-

a

10

3. Mapping to the target machine. The optimized sequence of virtual instructions are trans-
formed into operations for the real machine. Each transformation again follows a rule pro-
vided by the developer. Each rule indicates a source piece of code and a target
implementation in the form of micro-operations representing bit fields of the instruction-set.

4. Code compaction. Micro-operations are compacted into real instructions. The compaction
procedure executes based on constraints of both the bit-field formats and read/write/occupy
resources which are indicated by the developer. The compactor attempts to push the max-
imum number of micro-operations to the earliest possible positions. The straight-forward
tasks of assembly and linking immediately follow compaction.

The open programming concept The rule-driven compilation approach is built upon the
concept of an open programming environment. All the rules are defined in a well-structured
programming language. For example, in the first step of sequential code selection, the compiler
developer has at his/her disposal a language which contains a set of high-level primitives cor-
responding to information which is generated as syntax trees of the source program. In provid-
ing functions using these primitives, the developer defines the mapping from syntax trees to
assembly code, as shown in the example in Figure 10. This allows the developer to provide
simple mapping rules for the majority of cases, and more complex rules for instructions which
activate areas of architecture specialization. It is possible to provide sophisticated mapping
functions to handle architecture features which do not fall into the well-known categories of
standard processors.

A high level of open programming is provided at all the steps of the rule-driven compiler, allow-
ing a very flexible development system. The user is able to retarget the system upon the appli-
cation of suitable mapping functions. The quality of the compiler is directly proportional to the
amount of development time spent on optimization strategies. Moreover, previous compiler de-
velopment experience may be leveraged for processors with similar features.

Assessment of the approach Although the rules for this type of compiler must be written
by an experienced developer, the retargeting time is relatively short. Each of the compiler sys-
tems built for processors of the videophone were done within one person-month, and each pro-
duce acceptable code quality. Code size overhead varied between 0 and 30% in comparison
with hand-code. While execution time overhead was not measured, the algorithm time con-
straints were met in all applications.

*p++ = b + 1;

ASGN

ADD*p++

b 1

ASGN_RULE
....
? matches($left,ind_postinc)
{

STR_PINC $right, $left
}

binary_ADD_RULE
....
? matches($right,const)
{

ADDI $left, $right $dest
}

ADDI R1, 1, R1
STR_PINC R1, AX1

Rule Base

Syntax Tree

Sequential Assembly

Figure 11: Sequential code selection

11

The main strength of rule-driven compilers is in the inherent flexibility of the approach. The
compiler developer has the means for describing specific rules and strategies for efficiently
mapping higher-level constructs onto the processor, based on his knowledge of the architec-
ture idiosyncracies. Standard rules are put in place based on previous compiler experience,
and primitives are available to manipulate the compiler for new architectures with unforeseen
specialization.

When compared to a traditional compiler approach (Figure 9a), the rule-driven approach allows
for faster development time through the ability to retarget at each phase of compilation. The
environment provides high level mechanisms for quickly capturing compilation strategies. The
quality of the results depend on the compiler development effort. In the few cases when the
code quality is inadequate, a custom optimization module is incorporated with little effort.

When compared to model-based retargetable compilation approaches (Figure 9c) [8], the rule-
driven approach requires retargeting development time; whereas, in principle, a model-based
compiler requires only a small change to the model to arrive at a new compiler. However, in
our experience [9], the retargeting time is compensated by the applicability of the rule-driven
approach to a very broad set of processor architectures, from low-end microcontrollers to VLIW
DSPs (Very Large Instruction Word Digital Signal Processors). In addition, architecture specific
idiosyncracies may be handled by case-by-case development strategies.

Compiler Retargeting Compilers were developed for three embedded processors of the
videophone system: the MSQ, the BSP, and the VIP (Figure 1). For each of the architectures,
a functional rule base was typically developed in two person weeks, or roughly half of the total
targeting time including validation. This allows early feedback to the architecture design team
before the final refinements are made. Each compiler supports a subset of C; however, support
of the entire functionality of the architecture is always available.

As an example, we show in Figure 12 the MSQ (Micro-SeQuencer), which is the top-level con-
trol unit of the videophone system. The architecture is a single execution stream controller pro-
viding standard ALU operations (ADD, SUB, AND, OR, CMP, SHIFT); as well as standard
control operations (BR conditional/unconditional, BR indirect). Reserved instructions perform
the function of the bus interface protocol. A unique property of this block is a unit known as the
scheduler (SCH) which can affect the position of the program counter independent of the nat-

Data

ACC

SCH

INTERFACE

PC Prog ROM

ALU

Instruction Register

RAM

Figure 12: MSQ Top Controller of the SGS-Thomson Videophone

12

ural order of the program. The scheduler can access the interface directly and make decisions
depending on values from the exterior.

For the MSQ, the mapping of the C source to standard arithmetic and control operations was
relatively straight-forward. The only issues that arise are in the routing of data to the special
ACC register and appropriate locations in the RAM. This is easily handled in virtual code se-
lection. Architecture specific features required special attention, such as the mapping of case
statements onto the indirect branching instruction. This instruction requires alignment upon
specific bits. This is handled in the mapping to the target machine. The rule simply emits an
alignment directive along with the assembly code.

For the interface to the rest of the chip, volatile register variables were defined for the access
port. In this manner, compiler rules map reads and writes of these variables onto the appropri-
ate interface instructions. It is important that the variables are defined as volatile, otherwise,
compiler optimizations could remove the read and write accesses.

The C compiler for the BSP (Bit Stream Processor) (Figure 1) had similar targeting issues to
that of the MSQ. The main differing issue was the treatment and optimization of bit manipula-
tion operations used heavily in one part of the videotelephony process. The handling of the reg-
ister interface was reused from the MSQ.

For the VIP (VLIW Image Processor) (Figure 1), the declaration of compaction resources was
a fundamental development issue, due to the very large instruction word (VLIW) and multiple
execution streams. In addition, several built-in functions which correspond directly to hardware
functions needed to be designed. Often, hardware functionality which does not correspond to
a simple C operation requires the provision of a reserved built-in function in C. These are sup-
ported by the compiler and also allow the developer to provide equivalent workstation functions
for co-simulation purposes. Again, the register interface was reused from the MSQ. In this
case, compaction is disallowed with interface functions. This can be guaranteed through a
careful definition of the compaction resources.

C Compiler Results For the MSQ architecture, a subset of the H.261 code was taken from
the prior co-design methodology. This code had previously been written in VHDL and was
hand-translated to assembly (see Figure 2 VHDL model SW Behaviour). The examples contain
a cross section of the different types of tasks the MSQ performs.

This code, originally written in VHDL, was rewritten in C nearly line-for-line and compiled using
the MSQ C compiler. We then compared the compiled code with the hand-translated code writ-
ten in assembler. The results are shown in Figure 13.

On average, the compiled code size is roughly equal to the hand code size. This indicates that
for this processor, the compiler performs as well as an assembly-level programmer. This was
possible because of the natural mapping from C to the instruction-set of the controller architec-
ture. Only special cases needed to be addressed using the flexibility of rules.

In some cases the compiler produces more compact code than the hand code. One may argue
that the hand-coded assembly could have been improved in some cases; however, this reflects
the industrial reality of tight schedules that preclude exploring all possible optimizations of as-
sembly code. In addition, for real-time systems the assembly programmer is concerned only
with meeting the timing constraints. If the constraints are met, there is no need to further opti-
mize, especially if it means costly development time on the hand assembly code level.

13

For the BSP and VIP video processors, C compilers were also developed. The compiled code
met all code size and performance constraints. Although we have no comparisons with hand
code, this is a fortunate outcome of the previous benchmark which led to a decision by the de-
sign team to write all the code in C.

The results shown in this section indicate good quality results using a retargetable compiler
methodology for several blocks of the videophone architecture. However, we cannot yet claim
to have all the optimization capabilities in place for more complex architectures. For highly spe-
cialized arcitectures, the programmer must, in some cases, manipulate the source code based
on his knowledge of the architecture to arrive at better results. This is not the most ideal fashion
to program, as it discourages code portability, but it does provide the user with the important
first step to accepting a compiler methodology over assembly-level coding. The support of the
widest retargeting range independent of the source coding style producing quality compiler re-
sults is the goal of all research in the area of compilers for embedded processors [8].

Conclusion

Embedded processors and embedded software are rapidly becoming an essential part of the
emerging system-on-a-chip. This is mostly in response to the desire of incorporating flexibility
in order to track evolving standards and changing markets. Functional validation of C applica-
tion code with VHDL and embedded software compilation play critical roles in this design pro-
cess.

For functional validation, we have presented an effective approach to VHDL-C co-simulation,
which has advantages over commercially approaches. In addition to improved flexibility on the
style of C which may be simulated, it provides a distributed model of communication where
multiple C programs can run in parallel. As well, the model allows the transparent incorporation
of standard C debugging facilities. Results have shown that a simulation speedup of up to a
factor of three is achievable over pure RTL-based VHDL simulation.

Lines of
FlexWare Compiled Assembly from C
Hand Coded Assembly

800

H.261 Example

200

400

600

Machine Code

+7%

- 2%

- 1%

- 5%

grabber motion idct_out host_inter

Figure 13: C Compiler vs. Hand Code for ST MSQ controller

14

For software compilation, we have presented an effective environment for the retargeting of a
C compiler to a variety of embedded processor architectures. From control-dominated to data-
dominated architectures, the same development environment may be used to provide high
quality compilers. The methodology has provisions to deal with embedded processor peculiar-
ities. Furthermore, the approach handles architecture constraints such as interface protocols
and it allows the mapping of reserved built-in functions onto specialized hardware operations.
With a retargeting time on the order of one person-month, results have shown that the resulting
compiler produces machine code comparable to hand-coded quality. Depending on the com-
plexity of the processor architecture, optimization development time determines the total retar-
geting time.

As the amount of software content on the modern system-on-a-chip continues to grow, new co-
design and co-validation methodologies are needed to support the design cycle. We have pre-
sented two critical technologies for today’s design flow; however, there are also many other
practical related issues including: compiler validation, source-level debugging, and instruction-
set simulation. In addition, the embedded processor methodology opens new opportunities for
areas such as instruction-level profiling, static and dynamic analysis of instruction utilization,
and instruction-set design.

Acknowledgments

The authors would like to thank the members of the Integrated Video Telephone design team
at SGS-Thomson Microelectronics, especially Olivier Deygas, José Sanchez, and Michel Har-
rand. Being early users of the tools, they were essential to the development of production qual-
ity software.

References

[1] M. Harrand et al., “A Single Chip Videophone Encoder/Decoder”, Proceedings of the IEEE
International Solid-State Circuits Conference, Feb. 1995, pp. 292-293

[2] E. Berrebi, P. Kission, S. Vernalde, S. DeTroch, J.C. Herluison, J. Fréhel, A. Jerraya, I.
Bolsens, “Combined Control-flow Dominated and Data-flow Dominated High-level
Synthesis”, Proc. of the Design Automation Conference, June 1996, pp. 573-578.

[3] P. Paulin, J. Fréhel, M. Harrand, E. Berrebi, C. Liem, F. Naçabal, JC Herluison , “High-
Level Synthesis and Codesign Methods: An Application to a Videophone Codec”, Proc. of
EuroDAC/EuroVHDL, Sept. 1995.

[4] C.A. Valderrama, A. Changuel, P.V. Raghaven, M. Abid, T. Ben Ismail, A.A. Jerraya, “A
Unified Model for Co-simulation and Co-synthesis of Mixed Hardware/Software Systems”,
Proc. of ED&TC, March 1995.

[5] S. Vercauteren, B. Lin, H. DeMan, “Constructing Application-Specific Heterogeneous
Embedded Architectures from Custom HW/SW Applications”, Proc. of the Design
Automation Conference, June 1996, pp. 521-526.

[6] F. Naçabal, O. Deygas, P. Paulin, M. Harrand, “C-VHDL Co-Simulation: Industrial
Requirements for Embedded Control Processors”, Proc. of EuroDAC/EuroVHDL Designer
Sessions, Geneva, Sept. 1996.

15

[7] C.A. Valderrama, F. Naçabal, P. Paulin, A. Jerraya, “Automatic Generation of Interfaces
for Distributed C-VHDL Co-simulation of Embedded Systems: an Industrial Experience”,
Proc. of the Int. Workshop on Rapid Systems Prototyping, June 1996.

[8] Code Generation for Embedded Processors, ed. by P. Marwedel, G. Goossens, Kluwer
Academic Publishers, 1995.

[9] C. Liem, P. Paulin, M. Cornero, A. Jerraya, “Industrial Experience using Rule-driven
Retargetable Code Generation for Multimedia Applications”, International Symposium on
System-Level Synthesis, Cannes, France, Sept. 1995, pp. 60-65.

[10] R.P. Gurd, “Experience Developing Microcode Using a High-Level Language”, Proc. of the
16th Annual Microprogramming Workshop, Oct 1983, pp. 179-184.

16

Biographical Information: Clifford Liem

Clifford Liem received the Bachelor of Science degree in Physics from St. Francis Xavier University,
Antigonish, Nova Scotia, Canada in 1989 and the Master of Engineering degree in Electronics from
Carleton University, Ottawa, Ontario, Canada in 1991. From 1991 to 1994, he held an engineering pos-
tion at Bell-Northern Research / Northern Telecom Ltd. in Ottawa where he worked on retargetable
compilation, processor modelling, and RTL synthesis.

He is currently completing the Ph.D. degree at the TIMA laboratory, Institut National Polytechnique de
Grenoble (INPG) in tight co-operation with SGS-Thomson Microelectronics on methods and tools for
embedded instruction-set processors.

In addition to his research interests in retargetable compilation for embedded processors, he is involved
in instruction-set analysis and design, as well as hardware-software co-design.

Biographical Information: François Naçabal

François Naçabal received the M.S. degree in microelectronics from the Pierre-et-Marie Curie Univer-
sity of Paris, France in 1993. He is currently working toward the Ph. D degree in the Institut National
Polytechnique of Grenoble, France in cooperation with SGS-Thomson Microelectronics.

He has been working on hardware-software cosimulation and compilation for embedded software. His
research interests include hardware-software codesign, architecture exploration and performance analy-
sis for digital signal processors.

Biographical Information: Carlos Valderrama

Carlos Valderrama received an Electrical-Electronics degree from the National University of Cordoba,
Argentine in 1989 and a M.S. degree in microelectronics from the Federal University of Rio de Janeiro,
Brazil in 1993. He is currently working toward the Ph. D degree in the Institut National Polytechnique
of Grenoble, France.

He has been working on a VHDL compiler-simulator and on hardware-software codesign. His research
interests include hardware-software codesign in general, cosimulation and cosynthesis in particular.

Biographical Information: Pierre Paulin

Pierre Paulin received the B.Sc. degree in engineering physics in 1982 and the M. Sc. degree in electri-
cal engineering in 1984 from the Universite Laval, Quebec city, Canada. He obtained the Ph.D. degree
in electronics engineering in 1988 from Carleton University, Ottawa, Canada, as part of a cooperative
research project with BNR/Northern Telecom, Ottawa. This led to the development of the force-direct-
ed scheduling approach that has since been used in many high-level synthesis systems.

From 1989 to 1994, Dr. Paulin was with BNR/Northern Telecom, Canada, where he was responsible
for embedded software development tools. He is currently a manager in the Central R&D division of
SGS-Thomson Microelectronics in Grenoble, France and is responsible for the Embedded Systems
Technology group.

Dr. Paulin was awarded the Design Automation Conference (DAC) best presentation award in 1986,
and his 1987 and 1989 DAC papers were nominated for best paper awards. His interests are in the fields
of hardware/software co-design, embedded systems, compilation, high-level synthesis and system-level
design tools.

17

Biographical Information: Ahmed Jerraya

Ahmed Amine Jerraya received the engineering degree from the university of Tunis at Tunisia in 1980,
a Docteurs Ingenieur degree in 1983 and a Docteur d’Etat degree in 1989 from the University of Greno-
ble in France. He has held a full research position with the CNRS (Centre National de la Recherche Sci-
entifique) in France since 1986.

He participated in several successful french CAD projects such as the LUCIE project in the early 80’s
and more recently the high-level synthesis system AMICAL. He served as a general chair for the 9th
International Symposium on System Synthesis (1996).

He is currently the head of the system-level synthesis group within TIMA/CNRS-INPG-UJF where he
is developing methods and tools for behavioral synthesis and hardware-software codesign.

