
International Conference on Computer Aided Design: pp. 391-396 1

Generating Instruction Sets and Microarchitectures from Applications

Ing-Jer Huang and Alvin M. Despain
Department of Electrical Engineering – Systems

University of Southern California
Los Angeles, CA 90089-2561

ijhuang@usc.edu, despain@usc.edu

Abstract— The design of application-specific instruction set pro-
cessor (ASIP) system includes at least three interdependent tasks:
microarchitecture design, instruction set design, and instruction
set mapping for the application. We present a method that unifies
these three design problems with a single formulation: a modified
scheduling/allocation problem with an integrated instruction for-
mation process. Micro-operations (MOPs) representing the appli-
cation are scheduled into time steps. Instructions are formed and
hardware resources are allocated during the scheduling process.
The assembly code for the given application is obtained automati-
cally at the end of the scheduling process. This approach consid-
ers MOP parallelism, instruction field encoding, delay load/store/
branch, conditional execution of MOPs and the retargetability to
various architecture templates. Experiments are presented to
show the power and limitation of our approach. Performance
improvement over our previous work [4] is significant.

1. Introduction
Application specific instruction-set processors (ASIPs) offer a

flexible and low cost solution for embedded systems with specific
complex algorithms or control intensive applications [3][12]. As a
result of the progress in design automation, it is now possible to
synthesize ASIP-based embedded systems automatically. The
synthesis of ASIP systems is an complex design problem which
basically consists of three subproblems: microarchitecture design,
instruction set design and instruction set mapping, which have
been addressed by many people from different research areas.

High Level Synthesis (HLS), e.g., [7][9][10], generates
microarchitectures at the RTL level from behavior specifications,
which, in the context of ASIP design, are the instruction set spec-
ifications; Instruction Set Synthesis (ISS), e.g., [1][2][3][4], gen-
erates instruction sets from given descriptions of
microarchitectures; Instruction Set Mapping (ISM), e.g.,
[13][17][18], compiles the given applications to assembly code,
based on the given instruction set, so that the applications can be
efficiently executed on the microarchitecture. Clearly, these prob-
lems are not independent ones. The need to closely examine the
problems of HLS, ISS and ISM for instruction set processors has
been noted by researchers, e.g., [2] and [12]. To investigate the
interactions between these subproblems, most current approaches,
e.g., [14][15][16], rely on manually controlled iterations between
various synthesis tools.

This paper presents a method which expresses the synthesis of

ASIP-based embedded systems, consisting of three subproblems
HLS, ISS, and ISM, with a single formulation: a simultaneous
scheduling/allocation problem with an integrated instruction for-
mation process. As shown in Figure1, our method accepts appli-
cations expressed as dependency graphs of micro-operations
(MOPs), an objective function, design constraints, and an archi-
tecture template, and generates the microarchitecture by allocat-
ing resources to the given architecture template, the application-
specific instruction set, and the assembly code for the given appli-
cations. The design space of instruction sets consists of many fea-
tures in modern pipelined processors, including parallel MOPs,
operand (field) encoding, delay load/store/branch, and conditional
execution of MOPs. The architecture templates that we consider
are pipelined microarchitectures with a data stationary control
model [6].

In this formulation, MOPs are scheduled into time steps, sub-
ject to instruction word width, dependency and timing con-
straints. While MOPs are scheduled into time steps, hardware
resources are allocated, and instructions are formed at the same
time. Note that instruction formation has effects on resource allo-
cation as well. The assembly code is obtained from the schedule
after the instruction set is finalized. The method has been imple-
mented in our design automation system ASIA (Automatic Syn-
thesis of Instruction-set Architecture).

The rest of the paper is organized as follows. Section 2 sum-
marizes the basic problem formulation in our previous work [4]
of which our current method is an extension. Section 3 describes
the extension to accommodate microarchitecture design. Section
4 presents some experiments. Section 5 concludes this paper with
discussions on the achievements, limitations, and future direc-
tions.

Figure 1. The scheduling/allocation process with an integrated
instruction-formation process

Assembly CodeMicro-ArchitectureInstruction Set

(MOPs) Arch. Template
Applications

Objective Function
Design Constraints

Instruction
Formation

Scheduling /
Allocation

†. This work was supported by the ARPA under contract
No. Rutgers 4-26385.

International Conference on Computer Aided Design: pp. 391-396 2

2. Instruction set design and mapping as a
scheduling problem

In this section we summarize the basic problem formulation of
our previous work [4] which addresses the problems of ISS and
ISM as a scheduling problem with an integrated instruction for-
mation process. This formulation generates the instruction set and
assembly code for the given application and microarchitecture.
The extension to the basic formulation is given in Section 3 to
include the synthesis of microarchitectures.

2.1. Representation of applications

An application is represented as a collection of weighted basic
blocks. The weight is defined by the designer, and is usually used
to indicate the typical execution frequency or the “importance”,
by some measure, of the basic block. The basic blocks are repre-
sented by dependency graphs of MOPs that are supported by the
given microarchitecture. Figure2 shows an example of a basic
block consisting of six MOPs. The bold labels before the MOPs
are their IDs. The solid arrows are data-related dependencies. The
dashed arrows are control dependencies; the MOPs MO6 changes
the control flow at the end of the basic block, and hence logically
follows MOPs MO1~5.

2.2. Instruction set model

An instruction contains one or more parallel MOPs. MOPs are
controlled via instruction fields. The fields belong to some field
types. The instruction word, consisting of fields, is assumed to be
of fixed width. The widths of the instruction word and field types
are specified by the designer. An example is given in Table1.
Each instruction has one opcode field, but the use of other fields
is constrained only by the total number of bits needed by the oper-
ations in the instruction.

The operands of instructions can be encoded to become part of
the opcodes. There are two ways to encode operands. First, a spe-
cific value can be permanently assigned to an operand and
becomes implicit to the opcode. Second, the register specifiers
can be unified. For example, the instruction inc(R) ‘R<-R+1’ is
obtained from the general instruction add(R1,R2,Immed) ‘R1<-
R2+Immed’. The facts of R1=R2 (unifying register specifiers; i.e.,

both register accesses refer to the same physical register) and
Immed=1 (fixing an operand to a specific value which becomes
implicit) are encoded into the opcode inc. Encoding operands
saves instruction fields and allows more parallel MOPs to be
packed into a single instruction, at the cost of possibly larger
instruction set size, additional connections and hardwired con-
stants in the data path.

The semantics of an instruction can be represented by a binary
tuple <MOPTypeIDs,IMPFields>, where MOPTypeIDs is a list
of type IDs for the MOPs contained in the instruction, and
IMPFields is a list of operand fields that are encoded into the
opcode. For example, the binary tuple for the instruction
add(R1,R2,Immed) is <[rrai],[]>. The instruction contains one MOP
‘R1<-R2+Immed’ with the type ID rrai, which is represented by
the list [rrai]. Since no operand is encoded, the second argument of
the tuple is an empty list. On the other hand, the binary tuple for
the instruction inc(R) is <[rrai], [R1=R2,Immed=1]>. The list in the sec-
ond argument of the tuple specifies how the operands are
encoded: the element R1=R2 unifies the register specifiers R1 and
R2 to the same register, and the element Immed=1 fixes the immedi-
ate value permanently to the constant of one.

2.3. Instruction formation and mapping

Instructions are formed while MOPs are scheduled into time
steps by substituting the data values and register indices with gen-
eral field templates. For example, the instruction
add_store(R1,R2,R3,R4,Immed) ‘R1<-R2+Immed; m(R3)<-R4’ (‘;’ rep-
resents parallelism) is formed when two MOPs ‘r(15)<-r(11)+4’
and ‘m(r(11))<-r(11)’ are scheduled into the same time step. If the
design process decides to encode the instruction operands by uni-
fying the register specifiers R2=R3=R4, then this instruction
becomes push(R1,R4,Immed) which is used in Prolog compilation
[19]. This unification saves two register operand fields in the
instruction.

The instruction set is derived from the final schedule and
encoding decisions made by the scheduling process. The assem-
bly code is obtained from the schedule and the synthesized
instruction set.

2.4. Design constraints

MOPs are scheduled into time steps, subject to several con-
straints. First, the data/control dependencies and the timing con-
straints (for multi-cycle MOPs) have to be satisfied. If two
dependent MOPs are required to be separated by certain cycles
due to the timing constraint, independent MOPs, if available, or
NOPs (no-operations) are filled in the delay cycles. Second, the
instruction word width and the hardware resources consumed by
the instructions have to be no larger than what are specified by the
designer. Third, the size of the instruction set has to be no more
than 2opcode field width.

2.5. A simulated annealing algorithm

We use a simulated annealing algorithm for the instruction for-
mation and mapping problem. An initial schedule of the given
application, produced by a preprocessor, is given to the algorithm
as the initial design state. The algorithm then makes random
movement in the design space by applying move operators to
change the design state. In each movement, one MOP is selected
randomly or according to some heuristics, and assigned to a ran-
domly selected time step. Or, an instruction formation process
can be applied to a time step to transform the semantics of the
instruction at the time step. All of these movements are subject to
the timing and dependency constraints.

The move operators which change the design state are grouped

Instruction Field Type Number of bits

instruction word 32

opcode 6

register (R) 5

tag (T) 5

displacement (D) 8

immediate (I) 16

relation (<,=,>,≠) operator (OP) 2

Table 1: Bit width specification for instruction field types

Figure 2. The dependency graph of MOPs of a simple basic block

MO1:m(r2+0)<-r2+0
 MO2:r0<-r2+0

 MO3:m(r2+1)<-r2+1
 MO4:r1<-r2+1

 MO5:r2<-r2+2

 MO6: PC<-PC+1024

International Conference on Computer Aided Design: pp. 391-396 3

into two classes:
1. Manipulation of instruction semantics

Unification: Unify two register operands in the MOPs. Split:
Cancel the effect of the ‘unification’ operator. Implicit value:
Bind a register operand field to a specific register, or an
immediate data field to a specific value. Explicit value: Can-
cel the effect of the ‘implicit value’ operator. Genera liza-
tion: If the current instruction format of the selected time
step contains encoded operands, make these operands gen-
eral and become explicit in the instruction fields.

2. Manipulation of MOP’s location
Interchange: Interchange the locations of two MOPs from
different time steps. Displacement: Displace a MOP to
another time step. Insertion: Insert an empty time step after
or before the selected time step and move one MOP to the
new time step. Deletion: Delete the selected time step if it is
an empty one.

In addition, there are some designer controllable parameters in
the algorithm. The cooling schedule updates the current tempera-
ture. The movement accepting rules control the stability of design
state at various temperature levels. The heuristics are used to
select move operators and MOP targets when resolving violation
of design constraints. For example, when the resource usage of a
time step violates the resource constraint, the move operators uni-
fication, implicit value, interchange, displacement, insertion and
deletion can be randomly selected to be applied to the time step.

3. Extension for microarchitecture design
The previous formulation can be extended to synthesize the

microarchitecture at the same time, with the introduction of the
architecture template specification language, resource allocation,
a proper objective function, and design constraints which are dis-
cussed in this section.

3.1. Architecture templates

Ideally, it is desirable that the design automation system select
the most feasible architecture template from a pool of candidate
templates and carry out the design details. However, we have
adopted a simpler approach for our current method, in order to
manage the complexity of the problem. In our approach, the
designer gives the architecture template by specifying the pipe-
line configuration and the general connection patterns of the data
path. The algorithm then allocates appropriate hardware resources
to instantiate the architecture template. The resources to be allo-
cated are register read/write ports, memory ports, and functional
units.

The styles of micro-architectures considered here are pipelined
micro-architectures. The pipeline stages can be partitioned into
two sections: the instruction fetch stages and the instruction exe-
cution stages. The instruction fetch stages are common to all pipe-
line configurations. The instruction execution stages are defined
by the designer. For example, a basic pipeline, as shown in
Figure3 (a), can be functionally partitioned into stages for
instruction fetch (IF), instruction decode (ID), register read (R),
arithmetic/logic operation (A), memory access (M), and register
write (W). IF and ID belong to the instruction fetch stages, and R,
A, M, and W belong to the instruction execution stages. Each
functional stage may take more than one cycle, and can be further
pipelined. The latencies of the functional stages are design param-
eters which are specified by the designer.

Other variations can be defined as well. For example, the pipe-
line ‘IF-ID/R-A-M-W’, the case (b) in the figure, can be derived
by merging the register-read stage with the instruction-decode
stage, at the cost of restricting the instructions to single format for

register specification such that registers can always be pre-
fetched at the instruction-decode stage. On the other hand, the
pipeline ‘IF-ID-R-A/M-W’, the case (c), is derived by merging
the arithmetic stage with the memory stage, at the cost of elimi-
nating the displacement addressing mode. The displacements
have to be computed by other instructions proceeding the mem-
ory-related instructions.

Figure4 (a) depicts the data path model of the pipeline in
Figure3 (a). The register files at the top and bottom are the same
register file. They are duplicated for the ease of readability. The
data path model specifies the topology of modules, i.e., the con-
nection patterns of data path modules. In the figure, there are
paths R-A-M-W and its subpaths R-A-W, R-A-M, and M-W.
There also exist paths A-R, M-R, and W-R which are created by
the bypassing buses. The heavy dots in the figure indicate that the
number of data path resources are to be instantiated by the algo-
rithm.

The pipeline is controlled in a data stationary fashion [6]. In
the data stationary control, the opcode flows through the pipeline
in synchronization with the data being processed in the data path.
Figure4 (b) shows the control path with data stationary model for
the pipeline in Figure3 (a). Opcodes are forwarded to next stages

Figure 3. Basic pipeline and its variations

IF

Instruction
fetch

ID

Instruction
decode

R

Register
read

A

Arithmetic/

M

Memory
access

W

Register
writeLogic Operation

Instruction Execution

(a). basic pipeline

IF

Instruction
fetch

ID/R

Instruction
decode,

A

Arithmetic/

M

Memory
access

W

Register
writeLogic Operation

Instruction

(b). variation I

Register
read

Execution

IF

Instruction
fetch

ID

Instruction
decode

R

Register
read

A/M

Arithmetic/

W

Register
writeLogic/Memory

Instruction

(c).variation II

 Operation

Execution

Figure 4. An architecture template

PLA

status bits
from data path

Instruction
Opcode Pipeline

Stage

R

A

M

W

Register
File

Register
File

Memory

Data path Control path

PLA

status bits
from data path

PLA

status bits
from data path

PLA

status bits
from data path

B
yp

as
si

ng
 B

us

(a). (b).

International Conference on Computer Aided Design: pp. 391-396 4

synchronously. At each stage, the opcode, together with possible
status bits from the data path, is decoded to generate the control
signals necessary to drive the data path.

3.2. The specification language for architecture tem-
plates

The architecture templates can be abstractly described by
specifying the supported MOPs and a set of timing parameters.
The MOPs describe the pipeline configuration of the instruction
execution stages, the functionality supported by the microarchi-
tecture, and the connectivity among modules in the data path. For
example, in Table2 is the description of part of the MOPs sup-
ported by the architecture template in Figure4. Although not
shown here, conditional execution of MOPs is allowed. Note that
in this example, there is no direct connection between the register
read and write ports. Therefore, a direct register move is not pos-
sible, which has to be achieved by some dummy arithmetic or
logic operations such as adding with zero. The pipeline configura-
tion ‘IF-ID-R-A/M-W’ in Figure3 (c) can be obtained by elimi-
nating the MOPs rmd, mrd and mrad from Table2.

There are three attributes associated with each MOP. (1) The
cost of the instruction format is the instruction fields required to
operate the MOPs, including register specifiers, function selec-
tors, and immediate data. (2) The hardware cost is the resources
required to support the MOP. The hardware resources include
read/write ports of the register file, memory ports, and functional
units. (3) The required instruction execution stages are the pipe-
line stages in which the MOP is active. The third, fourth and fifth
columns in Table2 lists these three attributes for the correspond-
ing MOPs.

The set of timing parameters describes the operation latencies
in terms of clock cycles. There are two classes of operation laten-
cies: latencies for the operations of data path modules, and laten-
cies (delay cycles) for information passing between operations in
pipeline stages. Examples for the architecture template in
Figure4 are shown in Table3 and Table4, respectively. The M-
A pair in Table4 specifies that there should be one cycle delay
between a memory operation and a succeeding (dependent) arith-

Note that the design parameters are able to model the existence
of bypassing buses in the data path. For example, if we remove
the bypassing bus in the ‘A’ stage in Figure4, then the delay
cycles for the A-A, A-M, and A-C pairs in Table4 all become
one, instead of zero.

3.3. Resource allocation

Hardware resources are allocated while MOPs are scheduled
to time steps. This is similar to the problem formulation in [8].
For each fortime step, the required hardware resources are the
total of the resources consumed by each MOP scheduled into the
time step, minus the resources that are shared. The sharing of
resources in a time step is due to the operand encoding. When two
or more register reads belonging to different MOPs are unified,
i.e., reading from the same register, one register read port is suffi-
cient. On the other hand, if more than one destination register
receive results of the same arithmetic/logic expression, one func-
tional unit is enough since the computation result can be shared.

Take the instructions discussed in Section 2.3 for example.
The instruction add_store(R1,R2,R3,R4,Immed) requires three register
read ports for the register read specifiers R2, R3 and R4, one regis-
ter write port for R1, one functional unit for addition, and one
memory port for the store operation. On the other hand, the
instruction push(R1,R4,Immed) requires only one register read port, as
opposed to three, with the requirements for other types of
resources remaining unchanged. The saving is due to the unifica-
tion of register read specifiers R2=R3=R4.

The global resources allocated is then the union of the
resources used by each instruction.

3.4. Design constraints and objective function

The design constraints used in Section 2 remain intact, except
the resource ones which are eliminated from the problem formu-
lation. The algorithm is responsible for finding the best resource
allocation according to the objective function.

The goal of the algorithm is to minimize the value of the
objective function which is given by the designer. The objective
function can be an arbitrary function of the dynamic cycle count
C, the static code size S, the instruction set size I, the number of
register read (write) ports R (W), the number of memory ports M,
and the number of functional units F.

3.5. Design process

The design process for the HLS+ISS+ISM problem consists of
three phases.

ID MOP *

*. The operator ‘^’ appends a tag to a value before the value is sent to a
destination.

Inst.
Format
Cost†

†. Refer to the notation in Table1

Hardware Cost‡

‡. Notation: ‘R’=read port of register-file, ‘W’=write port of register-file,
‘M’=memory port, ‘F’=functional unit, and the value is the number of a
particular hardware resource. For example, ‘2R’ means two read ports for
register-file.

Execution
stages**

**. Notation: ‘R’=register read stage; ‘A’ =ALU stage, ‘M’=memory
stage, ‘W’=register write stage

rra R1 <- R1 + R2 R1, R2 2 R, 1 W, 1 F R, A, W

rrai R1 <- Immed + R2 R1, R2, I 1 R, 1 W, 1 F R, A, W

rrait R1 <- Tag^(Immed + R2) R1, R2, T, I 1 R, 1 W, 1 F R, A, W

rmd R1 <- mem(R2 + Immed) R1, R2, I 1 R, 1 W, 1 M, 1 F R, A, M, W

mr mem(R1) <- R 2 R1, R2 2 R, 1 M R, M

mi mem(R1) <- Immed R1, I 1 R, 1 M R, M

mrd mem(R1 + Disp) <- R2 R1, R2, D 2 R, 1 M, 1 F R, A, M

mrad mem(R1 + Disp) <- R2+
Immed

R1, R2, D, I 2 R, 1 M, 2 F R, A, M

jd pc <- pc + Immed I 1F A

Table 2: MOP specification

Data path module Latency

Register read 1

Register write 1

Memory access 2

Arithmetic/Logic 1

Table 3: Timing parameters: latencies of data path modules

Operation pair
Delay
cycles

Operation pair
Delay
cycles

arithmetic-arithmetic (A-A) 0 memory-control (M-C) 1

arithmetic-memory (A-M) 0 control-arithmetic (C-A) 1

arithmetic-control (A-C) 0 control-memory (C-M) 1

memory-arithmetic (M-A) 1 control-control (C-C) 1

memory-memory (M-M) 1

Table 4: Timing parameters: latencies of operation pairs

International Conference on Computer Aided Design: pp. 391-396 5

1. The given application is translated to dependency graphs of
MOPs which are supported by the given architecture tem-
plate. This translation is performed in two steps. First, the
application, written in a high level language, is translated
into an intermediate representation by the compiler of the
high level language (in our current environment, the Aquar-
ius Prolog Compiler [19]). Second, a retargetable MOP map-
per, consulting the given architecture template specified with
the language described in Section 3.2, transforms the inter-
mediate representation into the dependency graphs of MOPs.

2. A preprocessor generates a simple-minded schedule for the
MOPs. An instruction set is derived from the schedule. This
is done by directly mapping time steps in the schedule into
instructions without encoding any operand. The obtained
schedule and instruction set constitute the initial design state,
which can be an inferior one.

3. The simulated annealing algorithm, with the modifications
discussed in Section 3.3 and Section 3.4, is invoked to opti-
mize the design state. Note that the initial temperature for the
annealing process has to be higher than the problem in Sec-
tion 2. The number of movements tried at each temperature
has to be larger as well. These modifications are due to the
much larger design space when instruction sets and microar-
chitectures are designed together. Several experiments may
be necessary in order to set the proper values for these
parameters.

The best instruction set, microarchitecture, and assembly code
which minimize the objective function can be obtained after the
design state reaches the equilibrium state.

4. Experiments
In this section we present experimental results of our simu-

lated annealing algorithm for the design of application specific
instruction sets and microarchitectures, and instruction set map-
ping. To simplify the experiments, an application specific design
was synthesized for each given application. However, this is not
to mean that our algorithm can only be used to synthesize designs
for single applications. Application specific designs customized
for a set of given applications can be synthesized by taking the
collection of the MOP dependency graphs from all the given
applications as the input of the algorithm.

We used the MOP specification in Table2 and timing parame-
ters in Table3 and Table4 as the given architecture template. The
bit width constraints for instruction fields is given in Table1. The
following function is used as the objective function. The mean-
ings of the variables are given in Section 3.4.

Objective = 100ln(C)+ I + 2R + 3W + 5M + 4F EQ 1
We assumed that every basic block executes once for every

application. This assumption was due to the fact that the profile
analyzer was not available at the moment so that we were not able
to obtain the run time behavior, e.e., the execution counts of basic
blocks. The number of movements tried at each temperature point
is 5*(# of MOPs). The next temperature is 90% of the current
temperature. The experiments were conducted on a HP 750 work-
station with 224M memory.

Three symbolic applications were selected from the Prolog
benchmark suite [11]. hanoi_8 is the ‘hanoi’ problem solver.
con1 concatenates two strings into one string. nreverse reverses
the order of the given string . Note that the predicate concat defined
in con1 is used as a subroutine in nreverse as well. Figure5 lists
the source code in Prolog. The main clauses are given by the

designer to represent the typical execution of the programs.
The results are given in Table5. The columns under the header

“Synthesis results” are the outputs of the algorithm: the resource
allocation, cycle counts of the application, the instruction set size.
Note that con1 and nreverse have more MOP parallelisms avail-
able than hanoi_8. Therefore, con1 and nreverse are allocated
more hardware resources than hanoi_8 . Furthermore, some pow-
erful instructions are included in con1’s and nreverse’s instruc-
tion sets to make use of the additional hardware resources, as
indicated by the larger sizes of their instruction sets. In the table
we also list the number of candidate instructions (in the “Inst. set
space” column) and the number of microarchitecture configura-
tions (in the “uArch space” column) explored by the algorithm.
These numbers show that sufficient number of design candidates
have been explored.

For comparison, we also applied an iterative approach with
our previous tool [4] to find the best microarchitectures and
instruction sets for the applications. Our previous tool was con-
structed to generate instruction sets and mapping for given
resource allocation. Therefore, the most difficult task is to decide
that how many configurations of resource allocation should be
tried before we believe that sufficient design space has been
explored. For each application, we chose three resource configu-
rations from the “uArch space” column in Table5. The three con-
figurations include the best one (in the “Resource allocation
column in Table5) and two other possible configurations that are
closest to the best one1. Table6 lists the objective values and the
CPU times used by the tools. The header “The integrated
approach” lists the results of the algorithm presented in this paper.
The header “The iterative approach” lists the results of our previ-
ous tool. The results show that the integrated approach finds the
same or better designs than the iterative approach. And the inte-
grated approach has an average speedup of 3.5 in CPU time over
the iterative approach. This is because that while the iterative
approach has to conduct several complete runs with various
resource configurations in order to find the best solution, the inte-
grated approach find the best solution much faster by dynamically
switching between different resource configurations so that infea-

Benchmark

Synthesis results

Resource
allocation*

*. Refer to the footnote ‘‡’ in Table2 for the meanings of the notation.

Cycle
(C)

Inst. set
size (S)

Inst. set
space

uArch
space

hanoi_8 2R, 1W, 1M, 1F 38 19 126 8

con1 3R, 1W, 1M, 1F 135 24 244 7

nreverse 3R, 1W, 2M, 2F 313 25 275 7

Table 5: Synthesis results

1. In real designs, more possible configurations have to be tried,
in order to ensure that sufficient design space has been explored.

Figure 5. Application programs in Prolog

1: main :- concat([a,b,c],[d,e],_).
2: concat([],L,L).
3: concat([X|L1],L2,[X|L3]) :-

concat(L1,L2,L3).

1: main :- hanoi(8).
2: hanoi(N) :- move(N,a,c,b).
3: move(0,_,_,_) :- !.
4: move(N,A,B,C) :- M is N-1,

move(M,A,C,B), move(M,C,B,A).

(b). con1

(a). hanoi_8

1: main :-
nreverse([1,2,3,4,5,6,7,8,9,10,11,12,

2: 13,14,15,16,17,18,19,20,21,
3: 22,23,24,25,26,27,28,29,30],_).
4: nreverse([X|L0],L) :- nreverse(L0,L1),

concat(L1,[X],L).
5: nreverse([],[]).
6: concat([],L,L).
7: concat([X|L1],L2,[X|L3]) :-

concat(L1,L2,L3).

(c). nreverse

International Conference on Computer Aided Design: pp. 391-396 6

sible design space can be pruned early in the search process. The
comparison shows that the integrated approach, in addition to the
clarity in the problem formulation, is a significant performance
improvement over our previous approach in solving the combined
HLS+ISS+ISM problem.

It is difficult to fairly compare our approach with related work
since these approaches evolve from different research disciplines
such as computer architecture, compiler and high level synthesis.
They have different concerns, machine models and problem for-
mulations. Further investigations are necessary to compare
related work in the future.

Due to space limit, we do not list the synthesized instruction
sets in the paper. Interested readers may refer to [5]. By carefully
examining the synthesized instructions, we found that there exist
few powerful instructions that are rarely used in the assembly
code. The instruction set sizes can be reduced by deleting these
instructions, at the cost of slightly increased cycle counts. This
action will further reduce the objective values, resulting in better
solutions. However, this was not done by our algorithm. The rea-
son is that the chance of the MOPs contained in these instructions
being selected and displaced by the algorithm was very low since
this pattern occurred rarely in the application. To fix this problem,
we can increase the number of movements tried at each tempera-
ture point at the cost of increased CPU time. Or, we can introduce
more powerful move operators such as “delete an instruction” or
“delete a resource” to the algorithm at the cost of complicating
the design heuristics and modification to the data structure, since
the objects being moved is no longer just MOPs, which are simple
and local, but also instructions and resources, which are complex
and global.

The experiments also demonstrate that our tools can be used
for the exploration and analysis of several interesting architec-
tural properties of applications. However, the space limit does not
allow the discussion. Interested readers may refer to [5].

5. Conclusions

We have presented a method which encapsulates the combined
problem of instruction set design, microarchitecture design and
instruction set mapping with a single formulation: a simultaneous
scheduling/allocation problem with an integrated instruction for-
mation process. The formulation takes as inputs the application,
architecture template, objective function and design constraints,
and generates as outputs the instruction set, resource allocation
(which instantiates the architecture template) and assembly code
for the application. A simulated algorithm is used to solve the
problem. The method is an extension to our previous work [4].

We have presented experimental results with three Prolog
applications. Limitations of the method are shown, and possible
improvements are discussed. The experiments also show that the
current method has significant speedup over our previous method
coupled with an iterative approach.

In the future, we need to address the following problems. (1)

The CPU time grows quickly with the size of application. For
larger applications, the design may be accomplished in two
phases. In the first phase, the integrated synthesis task is per-
formed on the most important part of the applications. In the sec-
ond phase, instruction set mapping is performed for the rest of the
applications, based on the design derived on the first phase. (2)
The automatic generation of simulators for the synthesized
instruction sets and microarchitectures is necessary for the pur-
poses of verification and performance measurement. (3) Similar
to [8], binding and connection synthesis can be integrated into the
design process as well.

Reference
[1] J. P. Bennett, A Methodology for Automated Design of Computer In-

struction Sets, Ph.D. thesis, Univ. of Cambridge, Computer Labora-
tory, 1988

[2] Bruce Holmer, Automatic Design of Computer Instruction Sets,
Ph.D. thesis, Computer Science Department, Univ. of California,
Berkeley, 1993

[3] Alauddin Alomary, et al., “An ASIP Instruction Set Optimization
Algorithm with Functional Module Sharing Constraint,” Proc. of the
International Conference on Computer-Aided Designs, Nov. 1993

[4] Ing-Jer Huang and Alvin Despain, “Synthesis of Instruction Sets for
Pipelined Microprocessors,” Proc. of the 31st Design Automation
Conference, June 1994

[5] Ing-Jer Huang, Co-Synthesis of Instruction Sets and Microarchitec-
tures, Ph.D. thesis, Dept. of Electrical Engineering - Systems, Univ.
of Southern California, August 1994

[6] Peter M. Kogge, The Architecture of Pipelined Computers,
McGraw-Hill Book Company, 1981

[7] Mauricio Breternitz Jr. and John Paul Shen, “Architecture Synthesis
of High-Performance Application-Specific Processors”, Proc. De-
sign Automation Conference, 1990

[8] Srinivas Devadas and Richard Newton, “Algorithms for Hardware
Allocation in Data Path Synthesis,” IEEE Trans. on Computer-Aid-
ed Design , Vol. 8, No. 7, July 1989

[9] Ing-Jer Huang and Alvin Despain, “Hardware/Software Resolution
of Pipeline Hazards in Instruction Set Processors,” Proc. of the In-
ternational Conference on Computer-Aided Designs, Nov. 1993

[10] Richard Cloutier and Donald Thomas, “Synthesis of Pipelined In-
struction Set Processors,” Proc. of 30th DAC, 1993

[11] R. Haygood, A Prolog Benchmark Suite for Aquarius, Technical Re-
port, UCB/CSD 89/509, University of California, Berkeley, 1989

[12] Pierre Paulin, Clifford Liem, Trevor May, Shailesh Sutarwala, “DSP
Design Tool Requirements for Embedded Systems: A Telecommu-
nications Industrial Perspective,” to appear in Journal of VLSI Sig-
nal Processing , 1994

[13] Clifford Liem, Trevor May, Pierre Paulin, “Instruction-Set Match-
ing and Selection for DSP and ASIP Code Generation,” Proc. of
EDAC , 1994

[14] Johan Van Praet, Gert Goossens, Dirk Lanneer, Hugo De Man, “In-
struction Set Definition and Instruction Selection for ASIPs,” Proc.
of Int’l Symposium on High Level Synthesis, May 1994

[15] Bruce Holmer and Barry Pangrle, “Hardware/Software Codesign
Using Automated Instruction Set Design & Processor Synthesis,”
Proc. of Hardware/Software Codesign Workshop , 1993

[16] Hironobu Kitabatake and Katsuhiko Shirai, “Functional Design of a
Special Purpose Processor Based on High Level Specification De-
scription,” IEICE Trans. Fundamentals, Vol. E75-A, No. 10, Oct.
1992

[17] M. Corazao, et al., “Instruction Set Mapping for Performance Opti-
mization,” Proc. of ICCAD , Nov. 1993

[18] Wei-Kai Cheng and Youn-Long Lin, “Code Generation for a DSP
Processor,” Proc. of Int’l Symposium on High Level Synthesis , May
1994

[19] Peter Van Roy and Alvin Despain, “HIgh-performance Logic Pro-
gramming with the Aquarius Prolog Compiler,” Computer,
25(1):54-68, January 1992

Benchmark

The integrated
approach

The iterative
(previous) approach Speedup

(T2 /T1)Objective
value

Time T 1
(min.)

Objective
value

Time T2
(min.)

hanoi_8 398.76 10 398.76 38 3.80

con1 532.52 44 535.58 147 3.34

nreverse 626.62 197 634.30 682 3.47

Average 3.54

Table 6: Comparison with our previous approach [4]

