
Function Unit Specialization through Code Analysis

Daniel Benyamin and William H. Mangione-Smith

Electrical Engineering Department, UCLA, Los Angeles, CA, 90095
fbenyamin,billmsg@icsl.ucla.edu

Abstract

Many previous attempts at ASIP synthesis have employed tem-
plate matching techniques to target function units to application
code, or directly design new units to extract maximum performance.
This paper presents an entirely new approach to specializing hard-
ware for application specific needs. In our framework of a parame-
terized VLIW processor, we use a post-modulo scheduling analysis
to reduce the allocated hardware resources while increasing the
code’s performance. Initial results indicate significant savings in
area, as well as optimizations to increase FIR filter code perfor-
mance 200% to 300%.

1 Introduction

Digital signal processing (DSP) has exhibited remarkable
growth in many mainstream commercial applications, and as a re-
sult, now challenges traditional design flows to meet the markets’
needs. While these design approaches can take many paths, the
usual choices are either the hardware design of an ASIC or the soft-
ware design for a programmable DSP.

Taking an ASIC approach provides unmatched performance and
cost benefits. Unfortunately, ASICs by definition tend to target a
narrow range of applications. On the other extreme, programmable
processors have become more powerful to meet the growing com-
putational demand. Doing so while maintaining programmability,
however, usually produces devices too costly and inefficient. A re-
cent trend is to consider Application-Specific Instruction set Pro-
cessors (ASIPs) [2]. ASIPs provide dedicated resources for critical
tasks (e.g. motion estimation), while offering a complete instruc-
tion set for flexibility. The motivation for employing ASIPs is clear.
The compiler has a good view of the application at hand, and should
utilize the hardware accordingly.

Our approach is to allow the compiler to have complete con-
trol over the architectural design of a VLIW processor, a frame-
work which we call Application Specific Configurable Architec-
ture. Within this framework lies techniques to specialize the VLIW
function units through code analysis. In this paper, we focus on
optimizing loops, a technique which often yields the greatest per-
formance gains in DSP applications. More specifically, we strive
towards two independent goals:

1. Create function units for smaller hardware at the cost of run-
time performance.

2. Create function units for faster run-time performance at the
cost of larger area.

The key to our approach is to usemodulo scheduling[3] as a
guide. From the modulo schedule tables we can decide what func-

Mdes
Elcor

this paper
Executable

code

Performance
Monitor

Candidate
specializations Run-time

statistics

Pick candidates
Generate new

hardware description

Figure 1:The system overview.

tionality is necessary in the datapath, and what operations should
be optimized for greatest reduction in cycle count. In contrast to
previous efforts, this approach allows for fast and accurate special-
ization.

2 Related Work and System Overview

Most prior research efforts either attempted to generate code for
complex architectural features, or to directly synthesize these fea-
tures from a base instruction set. Liem [4] took the traditional ap-
proach of instruction-set matching, but included techniques to tar-
get specialized datapath units. One problem with this and related
methods, as seen later, is that more complex functions are less likely
to be used. Razdan [1] and Choi [5], on the other hand, both in-
vestigated methods of synthesizing new architectural features. Un-
fortunately, Razdan’s methods were limited to optimizing Boolean
operations, with little capability of further performance gains. Choi
generated complex, multi-cycle units, but did not account for the
possible explosion in hardware cost.

Our system augments existing VLIW compiler technology; Fig-
ure 1 illustrates the system we are using. TheMDES andELCOR
components are part of the Trimaran compiler system [7, 8, 9].
MDES is a flexible machine description system well-suited to
VLIW architectures, andELCOR is Trimaran’s back-end com-
piler; it is within the ELCOR tool that we have inserted our al-
gorithms. Currently, candidate specializations are produced in a
separate file, but no feed-back loop exists. We plan to add the capa-
bility of iterating through the design space. All specialization stud-
ies take placeafter scheduling, and only “pinhole” optimizations
are necessary to target new functionality.

0-7803-5832-X /99/$10.00 ©1999 IEEE.

3 The Modulo Scheduling Framework

For a given architecture and data/control dependency graph of a
software loop, it is possible to find the minimum iteration interval
(MII) for a modulo schedule [3]. This lower bound on the length of
each loop iteration must be the greater of two bounds, RecMII and
ResMII.

ResMII is the minimum schedule length based on resource uti-
lization. As a simple example, if an arithmetic unit performs two
additions, and each addition requires two cycles, thenResMII =
4. If two arithmetic units were provided, thenResMII = 2.

The RecMII is the minimum schedule length based on recur-
rence dependencies in the graph; such dependencies pass between
the iterations of a loop. To characterize these dependencies, a cir-
cuit in the graph can be annotated with latency and distance values.
The latency of a circuit is the number of cycles required to complete
each operation in the graph, and the distance of a dependency be-
tween two operations is the number of loop iterations that separate
them. Thus, the distance of a circuit is the sum of all distances of
the operations in the circuit. Once all circuits have been identified,
the RecMII can then be calculated as

RecMII = max
8circuits c

�
latency (c)

distance (c)

�
: (1)

It is important to note that the MII, whether it be defined by the
ResMII or the RecMII, may not be possible to achieve [3].

The framework provided by modulo scheduling can alleviate
some of the problems faced in specializing function units to the
high-level code. First, the schedules only cover loops, and the as-
sociated data structures tend to be small. This factor helps reduce
the algorithms’ runtime. Second, we can use the results of the MII
calculations as a guide towards specialization, i.e.:

� If MII=ResMII, then provide more resources.In this case the
resources are constraining the length of the schedule. The data
and control dependencies are such that instruction level par-
allelism (ILP) is available, but there are not enough resources
to perform parallel computations.

� If MII=RecMII, then reduce the operations’ latency.This ap-
proach corresponds to equation (1), where reducing the la-
tency of the operations directly reduces the RecMII. We will
see shortly how to determine which circuit achieves the max-
imum in (1).

4 Specializing for Area

Specializing for area is based on the following approach: each
ALU resource (e.g. an integer or a floating point ALU) only uses a
fraction of it’s hardware in a section of code. We analyze the usage
for each resource, and remove functionality when not needed. Since
loops consume the bulk of the software run-time, it is the instruc-
tions in these loop schedules which have the greatest weight in the
system. An algorithm for specializing function units for minimum
area now follows:

N=numALU resources;
for(i=1 to K scheduled operations) f

Create a new function unit r(i) based
on an operation and/or operands;

g
while(K>N) f

r(i) = merge(r(i), r(j)) such that

cost(all r) is minimized;
if(merge successful) f K=K-1; g

g

As an example, Figure 2 shows K=4 instructions scheduled onto
N=3 function units. For each instruction, create a resource ded-
icated to the instruction’s datapath. So ampy reg, #4 instruc-
tion would correspond to a constant coefficient multiplier (or in this
case, as simply a shift of two). Since we have only been allotted
three function units, we must merge a pair of instructions so that
the total area cost is minimized. At worst the cost remains the same
(no resource sharing), and at best the cost reduces by the size of one
custom function unit (full resource sharing).

��������������

�		�
��

��

�������

�		�
��
��

���

���

�		�
��

��

�		�
��

��

�		�
��
��

�		�
��

��

�		�

������

����
��
�� ������������������

����������

����
��
��

Figure 2:Deducing hardware requirements from a schedule.

Clearly, the heart of the algorithm is themerge function. This
function should include a set of heuristics that can make intelligent
decisions regarding the merging of different arithmetic operations.
For our experiments, we used a simple set of rules:

� If r_i==r_j , then merge.

� Merge constant functions with variable functions.

� Keep constant multiplier functions separate.

With these rules we analyzed several loop-intensive programs, such
as FIR filters, matrix-mutliplies, and number factoring. Area calcu-
lations for various ALU functions were estimated from ALU de-
scriptions of several processor designs. Some area estimates are
(relative to an integer or floating point ALU size of 1.0):

int. multiplier: 0.4

int. adder: 0.1

fp. multiplier: 0.58

fp. divider: 0.29

The analysis was performed on a VLIW machine with 4 integer
ALUs, 2 FP ALUs, 2 load/store units, and one branch unit. The
results are shown in Figure 3 for integer code and in Figure 4 for
floating point code.

Clearly, only a small amount of functionality within an ALU
resource is used for any particular loop. In many cases, the code re-
quired only counters to increment array indices, and one arithmetic
operation for the loop body. Note that the benchmarks were done
on a machine with 4 integer ALUs, so that on average the integer
code required only about one tenth of the hardware area allotted to
it (400% vs. 40%). One must be careful, however, to make sure
that codeoutsidethe loop body is able to run as well, so it may be

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

fir

bmm

adpcm

fact2

fib

fib_mem

mm

mm_dyn

mm_int

nested

paraffin

sqrt

strcpy

% Area of one Integer ALU

Figure 3: Area requirements for integer code as a fraction of the
area of one integer ALU. Programs with multiple bars indicate re-
duction for multiple loops in the code.

sensible to include one complete ALU and several area specialized
ALUs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

fir

bmm

adpcm

mm

sqrt

% Area of one FP ALU

Figure 4:Reduced ALU size for floating point code.

5 Specializing for Performance

We now consider an approach to optimize performance of func-
tion units. As mentioned previously, if a loop is coded such that it
becomes recurrence constrained, then one must optimize the timing
of the operations that define the II. Doing so may be difficult, since
the structure of the dependency graph and the timing of a machine’s
instructions may not indicate the problem.

We define thecritical path of a loop body to be the circuit c
which achieves the maximum in (1). For notation, letopi be an in-
structioni in the loop body, whereopi is scheduled later thanopi�1.
Let schedtime(opi) be the time slot the instruction is scheduled in,
andlatency(opi) the latency of the instruction.

Given a modulo-scheduled loop, the following algorithm will

usually1 find the critical path:
choose last scheduled instruction op i
that is not a branch;
for(each precedent instruction op j of op i,

j<i) f

if(latency(op j)=schedtime(op i)-schedtime(op j)) f
save op i in critical path;
i=j;

g

g

As an example, the schedule in Figure 5 is for the inner loop of a
floating point FIR filter code, with arrows indicating true dependen-
cies, and edge labels indicating the latency of the source instruction.
Note that the last two instructions are scheduled at a time greater
than the II of 9, and are “wrapped” around the initial nine cycles.
The very last instruction is a branch instruction, which will always
be the case in a modulo scheduled loop. Thus the algorithm starts
with the st instruction and traces backwards. When evaluating
the inclusion of thefadd instruction’s predecessors, the algorithm
does not choose theld instruction at time 2. This is because the
ld instruction has a latency of 2 but is allowed 3 cycles before the
dependentfadd instruction executes, and thus is not considered to
be part of the critical path. Indeed, the actual critical path (correctly
found by the algorithm), isld ! fmpy ! fadd ! st .

��� ���

��� ���

��� ���

��� �� ��

����

��

����

�	

0

1

2

3

4

5

6

7

8

9

10

3

3
2

2 2

0

1

2

3

4

5

6

7

8

0

1

�
��
�

�
�
�
��
��
�

Figure 5: Schedule for FIR filter code, where columns represent
hardware resources. Only the first cycle of multi-cycle operations
are shown.

Several example programs were run through the algorithm to
discover the critical paths, the results of which are documented in
Table 1. From these critical paths, the designer (or automated tool)
can focus on a function unit which performs a sequence of opera-
tions faster than the original code sequence. One common candi-
date in DSP systems is thempy-add instruction, which Table 1

1The algorithm has found the critial path for all of the code tested for
this report, but is not guaranteed to do so.

also indicates. However, it is important to note the other sequences
of instructions that were discovered, such asadd-add andmpy-
sub-divide-sub .

���� �������� ���� 	��
 ����	��
 ����

�� s1+=a[i][k]*b[k][j];

�
�������
������

��������

add
fl

fmpy

	�����	�����

�

����

�

��� y[i1]+=w[i2]*x[i1+i2];

add
fl

fmpy
fadd

fs

�� 	

���
x[i] = x[i] -

(x[i]*x[i] - (i+1))/
(2*x[i]);

add
fl

fmpy
fsub
fdiv
fsub

fs

�

����
a[i][j] = a[i-1][j] +
a[i][j-1] + a[i-1][j-

1];

add
fl

fadd
fadd

fs

�� 	

Table 1: The critical paths for different applications. “Length”
refers to the critical path length, which is usually greater than the II
(if not, then there is no software pipeline).

5.1 Case Study: FIR Filters

The application of FIR filters, which uses the common multiply-
accumulate structure, deserves some focused attention. A faster
multiply-accumulate does not necessarily mean a faster FIR filter.
For example, the code segment from “mm” in Table 1,

s1 += a[i][k]*b[k][j];

uses a floating-point multiply and add instruction, which take 6 cy-
cles total to compute. The II for this loop body, however, is just
3 cycles. Optimizingboth the floating point multiplyand the add
will reduce the II, but combining them into a single instruction will
not.

The code in the “fir” example is almost identical algebraically,
except that there is some amount of pointer arithmetic to index the
array. This arithmetic causes one extra cycle for each calculation,
but doing so offsets the modulo schedule. As a result, the amount
of ILP in the code is greatly reduced, forcing “fir” to run three times
slower than “mm”. The clue for optimization here is to combine the
pointer arithmetic into the load instruction. By doing so, the “fir”
code will see2� or 3� reduction in cycle count.

6 Conclusions

We have shown a novel way of specializing function units for
both area and speed improvements that is computationally simple
yet very effective. In a certain sense, we are able of generating en-
tire datapaths, such as FIR filters, for a VLIW architecture. Because
we are doing analysis after scheduling, we can guarantee whether a
certain specialization will improve performance. Lastly, the mod-
ulo scheduling framework tells us whether parallelism exists, but
is limited by resource usage, or that high latency resources are in-
hibiting parallelism in the code.

References

[1] R. Razdan and M.D. Smith, “A high-performance microarchi-
tecture with hardware-programmable functional units,” inIn-
ternational Symposium on Microarchitecture, 1994. pp. 172-
80.

[2] C. Lee, J. Kin, M. Potkonjak, W. Mangione-Smith, “Media
architecture: general purpose vs. multiple application-specific
programmable processor,” in35’th DAC, 1998. pp. 321-6.

[3] B. R. Rau, “Iterative modulo scheduling,” inInternational
Journal of Parallel Programming, vol.24, Feb. 1996. pp. 3-
64.

[4] C. Liem, T. May, P. Paulin, “Instruction-set matching and se-
lection for DSP and ASIP code generation,” inEDAC, 1994.
pp. 31-7.

[5] H. Choi, I.C. Park, S.H. Hwang, C.M. Kyung, “Synthesis of
application specific instructions for embedded DSP software,”
in ICCAD, 1998. pp. 665-71.

[6] M. Lam, “Software pipelining: an effective scheduling tech-
nique for VLIW machines,” inSIGPLAN, 1988. pp. 318-28.

[7] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. F. Warter and
W. W. Hwu, “IMPACT: An Architectural Framework for
Multiple-Instruction-Issue Processors,” inProc. 18th Ann.
Int’l Symposium on Comp. Arch., pp. 266-75.

[8] S. Aditya, V. Kathail and B. R. Rau, “Elcor’s Machine De-
scription System: Version 3.0” Tech. Report HPL-98-128
(R.1). H-P Laboratories, October 1998

[9] V. Kathail, M. Schlansker and B. R. Rau. “HPL-PD Archi-
tecture Specification: Version 1.1” Tech. Report HPL-93-80
(R.1). H-P Laboratories, Sept. 1998.

	Main Page
	ICCAD99
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers

