
An ASIP Design Methodology for Embedded Systems

Kayhan K
� � �

k
�
akar†

Escalade Corporation
2475 Augustine Drive

Santa Clara, CA 94086
kayhan@escalade.com

† The work was performed while the author was with Motorola, Inc.

Abstract
A well -known challenge during processor design is to obtain
the best possible results for a typical target application do-
main that is generally described as a set of benchmarks. Ob-
taining the best possible result in turn becomes a complex
tradeoff between the generality of the processor and the
physical characteristics. A custom instruction to perform a
task can result in significant improvements for an applica-
tion, but generally, at the expense of some overhead for all
other applications. In the recent years, Application-Specific
Instruction-Set Processors (ASIP) have gained popularity in
production chips as well as in the research community. In
this paper, we present a unique architecture and methodology
to design ASIPs in the embedded controller domain by cus-
tomizing an existing processor instruction set and architec-
ture rather than creating an entirely new ASIP tuned to a
benchmark.

1. Introduction
Many embedded systems have tight constraints for product
cost. The cost shows itself in two major types of characteris-
tics: code size and processor cost. Using off-the-self proces-
sors and memories is a common way to achieve the best
time-to-market and the lowest cost. Core-based design will
further decrease the cost by merging these off-the-shelf com-
ponents on a single die. It is generally easy for designers to
find the right processor with average performance and power
for an application. But, some parts of the application gener-
ally become performance bottlenecks. If such bottlenecks
can not be avoided through software reorganization, then
either ASIC co-processor solutions are used or the applica-
tion needs to upgrade to a higher performance processor
which would generally have a higher cost and energy con-
sumption.

Semiconductor industry generally attempts to address this
problem by designing processors that are tuned for a special
application domain such as DSP chips. DSP chips are regular
processors with special architectural features and instructions
that are tuned for digital signal processing. But, designing
domain-specific processors do not necessarily solve the
problem. There would be still applications that fit the general
focus area of a processor, but a more expensive processor
would have to be used due to a small number of perform-
ance bottlenecks.

This problem results in introduction of many commercial
processors that target a general application domain such as
embedded control, but also target a more specialized area
such as fuzzy logic [1]. Even in such cases, more specialized
instructions are desired on an individual application basis.
There are also existing processors such that unused instruc-
tions can be removed from the hardware at the time of syn-
thesis and from the software compiler to improve an applica-
tion’s characteristics.

In general terms, ASIP design task is the creation of a new
processor, whose instruction set and architecture are cus-
tomized for a targeted set of applications.

Creation of a new ASIP is tightly related to instruction-set
design, backward compatibilit y issues, software compilation,
design methodology, test and debugging tools and methodol-
ogy. Primarily due to lack of tools in this area and the mag-
nitude of work involved to integrate a new ASIP into design
environments, the use of ASIPs is rather limited at this time
[2].

1.1 Problem Statement
Our goal is to be able to optimize the code eff iciency and the
performance of a given application on a customizable proc-
essor architecture such that

- system eff iciency (cost, code size, performance, and
power) stays acceptable for embedded systems,

- customization should be as local as possible

- changes to the software environment should be as
minimal as possible (backward compatibilit y for the
bulk of the software should be preserved),

- variable degrees of manufacturing flexibilit y is pos-
sible (custom, mask programmable, field program-
mable)

The related work in instruction-set selection and retargetable
compilers can be used to further our approach. But, in this
paper we are limiting ourselves to discuss architectural and
methodological issues.

2. Related Work
Prior work in ASIP area is restricted to custom processor
design such as MC68HC12 and DSP processors, or to ap-
proaches which combine instruction set definition (or selec-
tion), architecture creation and instruction mapping onto a
newly created architecture.

Alomary, et. al. combines instruction-set and architecture
design [3]. The first step is to pass the software through a
profiler which provides an “ importance” factor for each op-
eration. The architecture consists of a kernel which contains
the primitive RTL operators, register file, multiplexers, con-
trol and buses. In addition to the kernel, application-specific
ALUs can be added to the architecture, based on an area
constraint. The architecture is fairly simple and restrictive.

Van Praet, et. al. provides an interactive approach to com-
bined instruction-set definition and instruction selection [4].
An analysis tool is used to extract operations and operation
sequences from an application. Instruction set is described in
nML. Datapath parts are created manually, based on obser-
vations from the analysis tool. Then, the operations are bun-
dled to create instruction formats such as loop instructions,
and these formats define encoding restrictions for the in-
structions.

Huang and Despain describe an approach which combines
instruction set and architecture design, and instruction map-
ping from an application and architecture template [5]. The
architecture template defines the pipeline structure which
consists of fetch, decode, register read, ALU operation,
memory access and register write phases.

Each of these approaches primarily creates a new instruction
set and a new architecture which are tuned for a set of appli-
cations. This kind of approach creates extreme fluidity in the
processor and requires very effective hardware synthesis and
retargetable software compilers. Also all approaches ignore
control aspect of design. This might be acceptable for DSP
applications but not for general embedded systems. It should
be noted all prior art (just as ours) have significant interac-
tivity built i nto the process.

Our approach, as described in the next section, is targeting a
different problem and area than ASIP research so far.

3. Approach
Our approach attempts to customize an existing processor
rather than synthesizing a brand new processor with a new
instruction set and architecture that are optimized for a group
of benchmark applications. In this section, we will provide a
brief description of the problem. Let

Ii be an existing instruction i,

Li be the number of clock cycles Ii takes to execute

NIi = { Ia, Ib, …} be a new instruction which is com-
posed of an ordered set of existing instructions

NLi be the number of clock cycles to execute NIi

Gi be the performance gain provided by NIi

Ci be a 0-1 variable and set to 1 if NIi is used

Fi be the use frequency of NIi

Then,

Gi = Σj Lj - NLi where j ∈ NIi

The general goal is to maximize the overall performance gain

Σi Fi Gi Ci where i is over NIi

subject to

ControlAreaConstraint ≥ TotalControlArea

DatapathAreaConstraint ≥ TotalDatapathArea

But, the control and datapath costs are not straightforward to
formulate except obtained through trial implementation.
When multiple instructions are mapped to the same pro-
grammable logic area, logic sharing and optimization affect
the total area (cost). The clock frequency is generally dic-
tated by many other factors and is not subject to general area-
performance tradeoff .

3.1 Design Flow
The design flow is shown in Figure 1. Given a software
(firmware) implementation using traditional methods, per-
formance bottlenecks are identified with the aid of a profiler
program. Then, the processor is customized through addition
of application-specific instructions. Finally, the firmware is
updated to use new instructions.

Traditional Software Design

Profiling

Functions Instruction
Sequences

Customize CPU

Update Software

New Instruction
Identification

Figure 1. ASIP Design Flow

3.2 Identification of New Instructions
The new instructions generally have one of the two charac-
teristics. They are either a subroutine in the firmware that is
used frequently or a sequence of instructions that are com-

mon in the application. Examples of subroutines include
device drivers, basic elements of computation, timer opera-
tions, and operating system primitives such as schedulers.
Examples of frequently used sequence of instructions include
shift-and-add sequence used in digital filtering operations,
zero-overhead loops, data type conversion, data formatting
for I/O, and signal polli ng.

Any sequence of instructions, whether detected manually or
automatically, can be used in our methodology. But, we fo-
cus our efforts to identifying low-level subroutines as candi-
dates for new instructions without loosing any generality.

3.3 Processor Architecture
Our overall approach depends on the processor architecture
that has a fixed set of instructions and datapath, but also
allows addition of new control and datapath logic through
use of programmable hardware. But, this is accomplished
without changing the overall processor architecture. Two
styles of such customizable processor architectures are
shown in Figure 2 and Figure 3. The decoder block shown
in both figures include sequencers hence should be consid-
ered as the entire control block.

These architectures do not impose any restrictions on in-
struction decoding, sequencing or datapath. Therefore, these
architectures are applicable to most industrial processors.

The architecture is chosen to have programmable logic to
reduce the time-to-market. A custom implementation can still
be used for high-volume applications. Implementing the
entire processor on programmable hardware is possible but
not preferred since it brings fluidity to the instruction set,
hence creates maintenance problems.

Application-specific computation can also be performed on a
peripheral implemented by programmable logic. The disad-
vantage of such an approach is the lack of eff icient access to
processor internals.

3.3.1 Static Decode Architecture
This type of architecture (shown in Figure 2) only allows a
set of predetermined opcodes to be used for new instructions,
thus having an eff icient opcode decoding structure. If any of
such opcodes is fetched and decoded, the signal starti which
is dedicated for the opcode i is activated. At the same time,
the processor relinquishes the control of the datapath control
signals to the programmable section. When opcode i is com-
pleted, it activates another dedicated signal donei, hence
giving control back. Intrinsic instructions do not have access
to the functional units implemented via programmable logic.
This architecture has a better implementation eff iciency, but
at the expense of presetting number of new instructions that
can use the programmable logic.

3.3.2 Dynamic Decode Architecture
This type of architecture is more flexible and allows new
opcodes to be defined per application basis. The decoding of
new instructions are performed by the programmable logic.
When such an instruction is fetched, the processor can not
decode it, hence it issues a trap by sending a signal to the
programmable logic section. If the programmable logic can
decode the instruction, then it is executed. If the instruction
is not known to the programmable logic, then it activates

trap’ which instructs the fixed logic to start ill egal instruction
handling procedures.

3.4 ASIP Implementation
The new ASIP implementation phase can be carried out us-
ing RTL synthesis or behavioral synthesis. Our preference is
to use behavioral synthesis to reduce the effort: reuse of code
segments from existing instructions in definition of the new
instructions and easy partitioning of new instruction logic
from the existing implementation. Only prerequisite for
using behavioral synthesis in this phase is the abilit y of be-
havioral synthesis to produce competitive (commercial
grade) processor implementations which was previously
shown in [6].

Control Bus

Bus1 BusN

...

DatapathController

Fixed Instruction
Decoding

New Instruction
Decoding

Start Done

Fixed Logic Programmable Logic

Data and Condition Signals

Se
le

ct
or

/M
er

ge
r

Figure 2. Static-decode Architecture

Control Bus

Bus1 BusN

...

DatapathController

Fixed Instruction
Decoding

New Instruction
Decoding

Trap Trap'

S
el

e
ct

or
/M

er
ge

r

Fixed Logic Programmable Logic

Data and Condition Signals

Done

Figure 3. Dynamic-decode Architecture

3.5 Firmware Modification
Once new instructions are implemented in the processor, the
embedded firmware needs to be modified to use these new
instructions. Depending on software methodology used, there
are three ways of performing this task.

If the firmware is entirely in assembly language or new in-
structions only relate to the portion of the firmware that is in
assembly language, only assembly code is modified.

If the software methodology is using a higher-level language
compiler such as C and if the new instructions are applicable
to other applications, then they can be added to the compiler.

When retargetable compilers become common tools, a new
architectural specification of the processor can be fed into a
retargetable compiler that becomes enabled for the new in-
structions.

4. Results
In this section, we present early results in two application
areas. We implemented two application-specific instructions
on an MC68HC11 [6] that we have previously implemented.
The first example is a hexadecimal-to-binary conversion
routine. This is a representative of a typical control-
dominated application. The second example is a 16x16 mul-
tiplication that is a representative of DSP applications. We
have explored different ways using programmable logic on
these examples demonstrating the tradeoff between available
programmable logic and performance speedup possible.

4.1 Hex-to-binary conversion example
The assembly code for hexadecimal-to-binary conversion
routine is shown in Figure 4. For this application, the new
instruction was implemented without using any programma-
ble datapath since the application is control oriented. The
implementation of a new instruction (partially shown in Fig-
ure 5) resulted in about 75% reduction in the number of cy-
cles to execute the hex-to-binary conversion routine as
shown in Table 1. This new instruction specification was
entirely mapped onto the existing structure of MC68HC11
through Matisse.

The benefits of the new instruction came from 3 sources:

- Elimination of unnecessary instruction fetching

- Elimination of data passing between instructions

- Elimination of creating unused information

The program memory use for the original implementation
was 39 bytes and it was reduced to 1 byte due to the use of a
new 1-byte opcode.

4.2 16x16 Multiply example
MC68HC11 has an 8-bit multiply instruction. The 16x16
multiplication is performed as a series of 8x8 multiplications
with use of scratch memory locations in main memory, as
shown in Figure 6.

3 different instruction implementations were explored. “A”
instruction only exploits a programmable control section
with no datapath extensions. Since the application is not
control dominated, the benefit was 33% cycle-count reduc-
tion, not as much as the previous example. Since a signifi-
cant bottleneck in this application is the shift-and-add multi-
plication, “B” instruction added an 8x8 single-cycle hard-
ware multiplier. In this case, cycle-count reduction reached
58%. To check the higher limit of performance increase
without changing the architecture of the MC68HC11, an
eight-location register file was added in instruction “C”.
Then, the cycle-count reduction reached 71%. The original
code size for the multiplication routine was 51 bytes and new
instructions enabled 1-byte opcode. Each of these new in-
structions was implemented by creating an algorithmic

specification and then implementing through behavioral
synthesis tool Matisse.

; Calling Routine
LDS #stack
LDAA #’D’
JSR HEXBIN

…

HEXBIN PSHA
UPCASE CMPA #’a’

BLT UCDONE

CMPA #’z’
BGT UCDONE
SUBA #$20

UCDONE CMPA #’0’
BLT HEXNOT
CMPA #’9’
BLE HEXNMB
CMPA #’A’
BLT HEXNOT
CMPA #’F’
BGT HEXNOT
ADDA #$9

HEXNMB ANDA #$0F
INS
RTS

HEXNOT PULA
SEV
RTS

Figure 4. Hexadecimal-to-binary conversion

Execution Cycles

Best

Case

Percent

Reduction

Worst

Case

Percent

Reduction

68HC11 30 - 53 -

68HC11+ 7 77 13 75

Table 1. Cycle-count reduction by a new instruction

5. Conclusion and Future Directions
We have provided an architecture and a co-design methodol-
ogy to improve the performance of embedded system appli-
cations through instruction-set customization. The customi-
zation method through mask-level or field programmabilit y
enables designers to optimize performance and code size of
applications. We have also demonstrated through both con-
trol and data oriented applications that significant benefits
are possible.

The methodology presented in this paper enables the use of
instruction-set customizable processors for core-based de-
sign, such as presented in [8]. More automation in the meth-
odology would enable automatic HW/SW partitioning capa-
bilit y. This would require accurate estimation techniques for
the implementation cost of candidate instructions.

6. Acknowledgements
The re-configurable processor architecture described in the
paper was developed in collaboration with C.-T. Chen. The
MC68HC11, which was used during experiments, was cre-
ated by T. E. Tkacik.

7. References

[1] MC68HC12 Reference Manual, Motorola, Inc.

[2] C. Liem. Retargetable Compilers for Embedded
Core Processors: Methods and Experiences in In-
dustrial Applications, Kluwer Academic Publish-
ers, 1997.

[3] A. Alomary, T. Nakata, Y. Honma, M. Imai, and
N. Hikichi. An ASIP Instruction Set Optimization
Algorithm with Functional Module Sharing Con-
straint, In Proceedings of International Confer-
ence on Computer-Aided Design, pages 526-532,
1993.

[4] J. Van Praet, G. Goossens, D. Lanneer, and H. De
Man. Instruction Set Definition and Instruction
Selection for ASIPs, In Proceedings of Interna-
tional Symposium on High-level Synthesis, pages
11-16, 1994.

[5] I.-J. Huang and A. M. Despain. Generating In-
struction Sets and Microarchitectures from Appli-
cations, In Proceedings of International Confer-
ence on Computer-Aided Design, pages 391-396,
1994.

[6] K. K � � � k � akar, C.-T. Chen, J. Gong, W. Phili p-
sen, and T. E. Tkacik, Matisse: An Architectural
Design Tool for Commodity ICs, IEEE Design
and Test of Computers, Vol. 15, No. 2, pp. 22-33,
April -June, 1998.

[7] MC68HC11 Reference Manual, Motorola, Inc.

[8] K. K � � � k � akar. Analysis of Emerging Core-based
Design Lifecycle, In Proceedings of International
Conference on Computer-Aided Design, pages
445-449, 1998.

Execution Cycles

Design Datapath Cycles % Reduction

68HC11 - 144 -

68HC11A - 97 33

68HC11B 8x8 mul 61 58

68HC11C 8x8 mul

RF[8]

42 71

Table 2. Cycle-count reduction by new multiplication
instructions.

….
// Instruction decoding
begin

 // PUSHA
 r_w_N = ‘WRITE;
 addr_bus { SP_hi,SP_lo} ;
 data_bus = ACCa;
 dec_L(SP_lo,addr_carry,SP_lo);
 dec_H(SP_hi,addr_carry,SP_hi);

 // CMPA #’a’
 r_w_N = ‘READ;
 alub = ~8’h61;
 add(Acca, Alub, 1’b1,ALU_OUT,Cx,V,Hx);
 N = ALU_OUT[7:7} ;
 If (! (N^V)) begin

 // hex number is >= ‘a’
 // CMPA #’z’ ;
 alub = ~8’h7a;

 add(Acca, Alub, 1’b1,ALU_OUT,Cx,V,Hx);
 N = ALU_OUT[7:7} ;

 if (Z | (N^V)) begin
 // hex number is <= ‘z’

 alub = ~8’h20;
 add(Acca, Alub, 1’b1,ALU_OUT,Cx,V,Hx);
 AccA = ALU_OUT;
 end
 end
 …
 …
end

Figure 5. Algorithmic code for hexadecimal-to-binary
conversion to be synthesized

; Multiplicand is stored in (Y) - (Y)+1
; Multiplier is in ACCD
; Multiplier Scratch location is in: (X)+4 - (X)+5
; Product is stored in (X) - (X)+3

mpy16 STD 4,X
LDD #0
STD 3,X
LDA 5,X
LDB 1,Y
MUL
STD 2,X
LDA 5,X
LDB 0,Y
MUL
ADDD 1,X
STD 1,X
LDA 4,X
LDB 1,Y
MUL
ADDD 1,X
STD 1,X
ROL 0,X
LDA 4,X
LDB 0,Y
MUL
ADDD 0,X
STD 0,X
RTS

Figure 6. 16x16 Multiplication

