
Building simulators

Simulation:

�Model the the system, using software, hardware, or both.
– Model is a behaving the way the system should behave
– Model can run programs, user can interact with the model
– Perform experiments on this model

� Key issue: Abstraction.

�Model will not be the real thing
– It won’t have all details
– It won’t run at the same speed as the real machine, probably

much slower than the real thing.
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Simulation: an example

Take an airplane design

� Aerodynamics are tested on a scale model in a windtunnel

� Everything is scaled down.

� It is made from other material

� There are no passenger seats inside, abstracted away.

Simulation of computer systems works in a similar way:

�We do not model simply by scaling,

�Hardware / Software is going to be modelled by software (and
possibly hardware)

� There is no such thing as scaling here.
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Simulation: benefits
Simulation is cheap

�Cheaper than building a system for real.

Simulation can be done during an early stage of design

� First 4 months of development.

Simulation allow you to perform “what-if” experiments

�What happens if we double the speed of the processor-clock?

�What if we remove a cache?

�What if we use a different routing algorithm?

Simulation is a proof of concept.
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Precision of Simulation?
Modelling: Abstraction from reality

� Simplifications

� Things have been made orthogonal
Laws (invariants):

� A model is never correct

�Detail may lead to higher accuracy
– Model is as weak as weakest component

� Execution Speed =
1

Detail
Find balance

� Between details and speed

� Between details in components of simulator
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Level of Detail

The primary factor affecting the precision of discrete simulators is the
level of detail

Choice in level of detail: Architecture example

� Low transistors/gates

�Medium Instructions, memory trace

�High abstract from application

Lets study the possibilities for a machine:

�Multiprocessor system with 4 processors and a bus running some
fantastic program.
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Low level

Lowest levels: make a complete implementation in logic (transistors,
gates)

� Simulate this implementation at electronic level (voltages,
currents, ...)

) Execution time, tens of hours per clock-cycle
– Gives information about timings within clock-cycle
– Does not tell anything about timings of program

� Simulate this implementation at Digital level (0/1)

)Quite a bit faster, minutes per instruction?
– Does not tell anything about timings of program
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Medium level
Model of the components:

�Memory:
– Model it as an array of bytes (or integers)

� Bus:
– Simple model: bus is in use or not
– Could incorporate arbitration timings

�Cache:
– Software implementation of set associative cache

� Processor:
– Instruction interpreter

� 1000 instructions per second.
Bottleneck:

� Processor simulation

�Can be solved with a simple trick
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High level
Model

�Memory:
– Forget it.

� Bus:
– Simple queueing model
– or Forget the bus completely (PRAM)

�Cache:
– Probability model 95%/5%
– 100% Hit (PRAM)

� Processor:
– (Pseudo) Random accesses, or pick random pieces of traces.

How accurate?

� Still tells something about behaviour, especially the contention on
critical sections in software
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Simulation models
Basic decision about the type of the simulation model:

� Functional Simulator
– Causal relationships only; functional simulation.

�Continuous time
– Time flows continuously, as in physical problems.

�Constant time
– Time flows with constant steps dictated by a clock, as in a

computer.

�Discrete time
– Time makes irregular steps, as in queueing problems.
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Functional Simulators

� Execute functionality of a system.

� Ignores timing constraints.
– Cache is as fast as a memory.
– Addition is as fast as square root.

�Useful if you just want to check whether a system is functionally
correct, and you aren’t too bothered about timings.

�Models all causal constraints

)Observes flow of time

) Forces that X must happen after Y and Z have happened.
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Implementing a Functional Simulator

� Every action will cause another action to happen.

� If there are no concurrent activities:
– One function in a program can call another function to simulate

the activity of another component of the system.

� If there are concurrent activities:
– Strategy above may work, if you can execute concurrent

activities sequentially.
– Eg, main program asks ten processors to execute an

instruction; one at a time
– Otherwise; you will need processes and a clock to synchronise

them.
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Continuous time
Continuous time:

� take small steps δt to approximate time that should flow
continuously.

� lim δt # 0 gives better approximations.

Mostly used to “solve” differential equations that define the model

�Gas flow, Computational Fluid Dynamics, known as CFD, Weather
predictions, chip simulations.

Not solved, mostly a crude approximation

� Solving the equation would give a precise answer (and an
analytical model).
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Continuous time example, a chip
Initialise charges
Repeat

For every square micrometer
Calculate new charge

EndFor
time = time + dt ;

Until next week
Observe:

� Execution Speed = O

�

1
δt

�

�Accuracy = O

�

1
δt

�

Accuracy is limited by numerical stability and step size
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Implementing continuous time
In general two sets of state variables

�One contains current values

�One to calculate new values

�Copy new to old every iteration

Repeat
Calculate New state from Old
Time = Time + dt
Copy New to Old

Until ...
Optimisations:

�Use two sets alternating (no need to copy)

�When there are no dependencies a single state suffices
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Implementing Continuous Time
Difficulty of continuous time:

� Find the right approximations.

E.g.,

�Charge distributes through a plane:

for all x, y do
ncharge[x,y] =

c*dt*ocharge[x,y-1] + c*dt*ocharge[x,y+1] +
c*dt*ocharge[x-1,y] + c*dt*ocharge[x+1,y] +
(1-c*4)*dt*ocharge[x,y] ;

This is often an integration by discrete steps.

� Errors accumulate quickly!

� Take a good approximation (Euler).
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Constant time steps
Used to simulate systems with a clock:

� Low level computer hardware.

� Small steps δt model exact behaviour.

�No choice in setting δt.
Example of circuit simulation:

Repeat
Stabilise circuit
time = time + dt

Until time > end_time
Observe:

�No choice in δt.

� Execution Speed = O

�

1
δt

�

�Accuracy is constant; worthless if circuit cannot stabilise in δt
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Implementing Constant Time
Constant time: trivial

� Like continuous time, but there are no circular dependencies
(– direct feedback in your machine!)
(– Might have a two clock scheme)

�Work out dependencies

� update from left to right.

Repeat
For all phases i of the clock

Do all operations for clock phase i
Until ...

) You do not need to maintain the clock!

Henk Muller 17 COMS30201 October 11, 2001

Discrete time
Take time step until next interesting point.

�Nothing happens between time steps, time steps differ in length.
Mostly used to simulate queueing systems:

�Cars at a traffic light,

�Messages in a network,

�Customers in a bank, example:

Repeat
Wait till something happens
If customer arrives,

queuelength=queuelength+1
If teller ready,

queuelength=queuelength-1
Until time > end_time
Observe that this is an exact simulation
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Virtual Time
All simulation models have something with time.

�May flow continuous or in discrete steps, but there is such a thing
as time

A simulator runs in its own time space

) Simulator implements a virtual clock.

� A virtual clock ticks, and defines the simulation time.

� It runs typically slower than a real clock (real time).

An example implementation of the clock:

long virtual_time ;

Increment it when necessary.
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Implementing Discrete simulators

Simplest way: maintain an event list.

� Event: what is to happen when

� Sorted on Time of event

� Execute event on first element of list

�May generate future events in the list

� Time is defined by first element

We will first discuss the event list in detail

� Example:

� Bank with customers.
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Event List: Time 11:12, Queue: 0

w 11:23 Customer arrives

?

11:21 Customer arrives

?

11:19 Teller ready

?

11:12 Customer arrivesREPEAT
Time = of head of list
Take one from list
IF customer THEN

queuelength++
If teller ready THEN

queuelength--
Time+7: teller ready

UNTIL list is empty.
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Event List: Time 11:19, Queue: 1

w 11:23 Customer arrives

?

11:21 Customer arrives

?

11:19 Teller ready

?

11:12 Customer arrivesREPEAT
Time = of head of list
Take one from list
IF customer THEN

queuelength++
If teller ready THEN

queuelength--
Time+7: teller ready

UNTIL list is empty.
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Event List: Time 11:21, Queue: 0

w 11:26 Teller ready

?

11:23 Customer arrives

?

11:21 Customer arrives

?

11:19 Teller ready

?

11:12 Customer arrivesREPEAT
Time = of head of list
Take one from list
IF customer THEN

queuelength++
If teller ready THEN

queuelength--
Time+7: teller ready

UNTIL list is empty.
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Event List: Time 11:23, Queue: 1

w 11:26 Teller ready

?

11:23 Customer arrives

?

11:21 Customer arrives

?

11:19 Teller ready

?

11:12 Customer arrivesREPEAT
Time = of head of list
Take one from list
IF customer THEN

queuelength++
If teller ready THEN

queuelength--
Time+7: teller ready

UNTIL list is empty.
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Event List: Time 11:26, Queue: 2

w 11:26 Teller ready

?

11:23 Customer arrives

?

11:21 Customer arrives

?

11:19 Teller ready

?

11:12 Customer arrivesREPEAT
Time = of head of list
Take one from list
IF customer THEN

queuelength++
If teller ready THEN

queuelength--
Time+7: teller ready

UNTIL list is empty.
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Implementation can be painful
Writing it with a single loop becomes a pain when there are more
than two components.

�Requires a concurrency model

� A central process manages the event list.

� Processes can add events to the event list.

� Events are executed and scheduled by passing them to a process.

Virtual clock

Processor Memory

I need to wait I need to wait
Go Go

Henk Muller 22 COMS30201 October 11, 2001

The Virtual Clock

The virtual clock maintains the current time, event list and acts as the
scheduler.

� Each process sends a request to the clock to be stopped for n
timeunits.

� The virtual clock will send a message ‘Ok, you have waited long
enough’ when n has passed.

� The virtual clock schedules the other processes.
– The blobs are “Objects”.
– The square thing is a scheduler
– The arrows indicate communication between objects and the

scheduler.
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Discrete Event Simulators in C
typedef struct event { struct event *next, int time ;

process_context *c ; } event ;
static event *hea d = 0 ;

int main( void ) {
event *tmp ;
while( head != NULL ) {

tmp = head ;
now = tmp->time ;
head = head->next ;
(*tmp->c->func)( tmp->c ) ;
free( tmp ) ;

}
}
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Conclusions
Advantage:

� You don’t have to physically build the system
Before simulating:

� Think before you start:
– What is the purpose (functionality? Timings?)
– Can’t you solve it analytically?
– What level of detail is important?
– What is the expected run time (number of computations)
– What is the accuracy?

� All choices that must be made explicitly before making a simulator.

� Balance
– Whole system is accurate as worst component

)Makes no sense to have some very accurate parts (unless to
convince yourself of the functionality)
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