
Building simulators

Simulation:

�Model the the system, using software, hardware, or both.
– Model is a behaving the way the system should behave
– Model can run programs, user can interact with the model
– Perform experiments on this model

� Key issue: Abstraction.

�Model will not be the real thing
– It won’t have all details
– It won’t run at the same speed as the real machine, probably

much slower than the real thing.

Henk Muller 1 COMS30201 October 11, 2001

Simulation: an example

Take an airplane design

� Aerodynamics are tested on a scale model in a windtunnel

� Everything is scaled down.

� It is made from other material

� There are no passenger seats inside, abstracted away.

Simulation of computer systems works in a similar way:

�We do not model simply by scaling,

�Hardware / Software is going to be modelled by software (and
possibly hardware)

� There is no such thing as scaling here.

Henk Muller 2 COMS30201 October 11, 2001

Simulation: benefits
Simulation is cheap

�Cheaper than building a system for real.

Simulation can be done during an early stage of design

� First 4 months of development.

Simulation allow you to perform “what-if” experiments

�What happens if we double the speed of the processor-clock?

�What if we remove a cache?

�What if we use a different routing algorithm?

Simulation is a proof of concept.

Henk Muller 3 COMS30201 October 11, 2001

Precision of Simulation?
Modelling: Abstraction from reality

� Simplifications

� Things have been made orthogonal
Laws (invariants):

� A model is never correct

�Detail may lead to higher accuracy
– Model is as weak as weakest component

� Execution Speed =
1

Detail
Find balance

� Between details and speed

� Between details in components of simulator

Henk Muller 4 COMS30201 October 11, 2001

Level of Detail

The primary factor affecting the precision of discrete simulators is the
level of detail

Choice in level of detail: Architecture example

� Low transistors/gates

�Medium Instructions, memory trace

�High abstract from application

Lets study the possibilities for a machine:

�Multiprocessor system with 4 processors and a bus running some
fantastic program.

Henk Muller 5 COMS30201 October 11, 2001

Low level

Lowest levels: make a complete implementation in logic (transistors,
gates)

� Simulate this implementation at electronic level (voltages,
currents, ...)

) Execution time, tens of hours per clock-cycle
– Gives information about timings within clock-cycle
– Does not tell anything about timings of program

� Simulate this implementation at Digital level (0/1)

)Quite a bit faster, minutes per instruction?
– Does not tell anything about timings of program

Henk Muller 6 COMS30201 October 11, 2001

Medium level
Model of the components:

�Memory:
– Model it as an array of bytes (or integers)

� Bus:
– Simple model: bus is in use or not
– Could incorporate arbitration timings

�Cache:
– Software implementation of set associative cache

� Processor:
– Instruction interpreter

� 1000 instructions per second.
Bottleneck:

� Processor simulation

�Can be solved with a simple trick

Henk Muller 7 COMS30201 October 11, 2001

High level
Model

�Memory:
– Forget it.

� Bus:
– Simple queueing model
– or Forget the bus completely (PRAM)

�Cache:
– Probability model 95%/5%
– 100% Hit (PRAM)

� Processor:
– (Pseudo) Random accesses, or pick random pieces of traces.

How accurate?

� Still tells something about behaviour, especially the contention on
critical sections in software

Henk Muller 8 COMS30201 October 11, 2001

Simulation models
Basic decision about the type of the simulation model:

� Functional Simulator
– Causal relationships only; functional simulation.

�Continuous time
– Time flows continuously, as in physical problems.

�Constant time
– Time flows with constant steps dictated by a clock, as in a

computer.

�Discrete time
– Time makes irregular steps, as in queueing problems.

Henk Muller 9 COMS30201 October 11, 2001

Functional Simulators

� Execute functionality of a system.

� Ignores timing constraints.
– Cache is as fast as a memory.
– Addition is as fast as square root.

�Useful if you just want to check whether a system is functionally
correct, and you aren’t too bothered about timings.

�Models all causal constraints

)Observes flow of time

) Forces that X must happen after Y and Z have happened.

Henk Muller 10 COMS30201 October 11, 2001

Implementing a Functional Simulator

� Every action will cause another action to happen.

� If there are no concurrent activities:
– One function in a program can call another function to simulate

the activity of another component of the system.

� If there are concurrent activities:
– Strategy above may work, if you can execute concurrent

activities sequentially.
– Eg, main program asks ten processors to execute an

instruction; one at a time
– Otherwise; you will need processes and a clock to synchronise

them.

Henk Muller 11 COMS30201 October 11, 2001

Continuous time
Continuous time:

� take small steps δt to approximate time that should flow
continuously.

� lim δt # 0 gives better approximations.

Mostly used to “solve” differential equations that define the model

�Gas flow, Computational Fluid Dynamics, known as CFD, Weather
predictions, chip simulations.

Not solved, mostly a crude approximation

� Solving the equation would give a precise answer (and an
analytical model).

Henk Muller 12 COMS30201 October 11, 2001

Continuous time example, a chip
Initialise charges
Repeat

For every square micrometer
Calculate new charge

EndFor
time = time + dt ;

Until next week
Observe:

� Execution Speed = O

�

1
δt

�

�Accuracy = O

�

1
δt

�

Accuracy is limited by numerical stability and step size

Henk Muller 13 COMS30201 October 11, 2001

Implementing continuous time
In general two sets of state variables

�One contains current values

�One to calculate new values

�Copy new to old every iteration

Repeat
Calculate New state from Old
Time = Time + dt
Copy New to Old

Until ...
Optimisations:

�Use two sets alternating (no need to copy)

�When there are no dependencies a single state suffices

Henk Muller 14 COMS30201 October 11, 2001

Implementing Continuous Time
Difficulty of continuous time:

� Find the right approximations.

E.g.,

�Charge distributes through a plane:

for all x, y do
ncharge[x,y] =

c*dt*ocharge[x,y-1] + c*dt*ocharge[x,y+1] +
c*dt*ocharge[x-1,y] + c*dt*ocharge[x+1,y] +
(1-c*4)*dt*ocharge[x,y] ;

This is often an integration by discrete steps.

� Errors accumulate quickly!

� Take a good approximation (Euler).

Henk Muller 15 COMS30201 October 11, 2001

Constant time steps
Used to simulate systems with a clock:

� Low level computer hardware.

� Small steps δt model exact behaviour.

�No choice in setting δt.
Example of circuit simulation:

Repeat
Stabilise circuit
time = time + dt

Until time > end_time
Observe:

�No choice in δt.

� Execution Speed = O

�

1
δt

�

�Accuracy is constant; worthless if circuit cannot stabilise in δt

Henk Muller 16 COMS30201 October 11, 2001

Implementing Constant Time
Constant time: trivial

� Like continuous time, but there are no circular dependencies
(– direct feedback in your machine!)
(– Might have a two clock scheme)

�Work out dependencies

� update from left to right.

Repeat
For all phases i of the clock

Do all operations for clock phase i
Until ...

) You do not need to maintain the clock!

Henk Muller 17 COMS30201 October 11, 2001

Discrete time
Take time step until next interesting point.

�Nothing happens between time steps, time steps differ in length.
Mostly used to simulate queueing systems:

�Cars at a traffic light,

�Messages in a network,

�Customers in a bank, example:

Repeat
Wait till something happens
If customer arrives,

queuelength=queuelength+1
If teller ready,

queuelength=queuelength-1
Until time > end_time
Observe that this is an exact simulation

Henk Muller 18 COMS30201 October 11, 2001

Virtual Time
All simulation models have something with time.

�May flow continuous or in discrete steps, but there is such a thing
as time

A simulator runs in its own time space

) Simulator implements a virtual clock.

� A virtual clock ticks, and defines the simulation time.

� It runs typically slower than a real clock (real time).

An example implementation of the clock:

long virtual_time ;

Increment it when necessary.

Henk Muller 19 COMS30201 October 11, 2001

Implementing Discrete simulators

Simplest way: maintain an event list.

� Event: what is to happen when

� Sorted on Time of event

� Execute event on first element of list

�May generate future events in the list

� Time is defined by first element

We will first discuss the event list in detail

� Example:

� Bank with customers.

Henk Muller 20 COMS30201 October 11, 2001

Event List: Time 11:12, Queue: 0

w 11:23 Customer arrives

?

11:21 Customer arrives

?

11:19 Teller ready

?

11:12 Customer arrivesREPEAT
Time = of head of list
Take one from list
IF customer THEN

queuelength++
If teller ready THEN

queuelength--
Time+7: teller ready

UNTIL list is empty.

Henk Muller 21– i COMS30201 October 11, 2001

Event List: Time 11:19, Queue: 1

w 11:23 Customer arrives

?

11:21 Customer arrives

?

11:19 Teller ready

?

11:12 Customer arrivesREPEAT
Time = of head of list
Take one from list
IF customer THEN

queuelength++
If teller ready THEN

queuelength--
Time+7: teller ready

UNTIL list is empty.

Henk Muller 21– ii COMS30201 October 11, 2001

Event List: Time 11:21, Queue: 0

w 11:26 Teller ready

?

11:23 Customer arrives

?

11:21 Customer arrives

?

11:19 Teller ready

?

11:12 Customer arrivesREPEAT
Time = of head of list
Take one from list
IF customer THEN

queuelength++
If teller ready THEN

queuelength--
Time+7: teller ready

UNTIL list is empty.

Henk Muller 21– iii COMS30201 October 11, 2001

Event List: Time 11:23, Queue: 1

w 11:26 Teller ready

?

11:23 Customer arrives

?

11:21 Customer arrives

?

11:19 Teller ready

?

11:12 Customer arrivesREPEAT
Time = of head of list
Take one from list
IF customer THEN

queuelength++
If teller ready THEN

queuelength--
Time+7: teller ready

UNTIL list is empty.

Henk Muller 21– iv COMS30201 October 11, 2001

Event List: Time 11:26, Queue: 2

w 11:26 Teller ready

?

11:23 Customer arrives

?

11:21 Customer arrives

?

11:19 Teller ready

?

11:12 Customer arrivesREPEAT
Time = of head of list
Take one from list
IF customer THEN

queuelength++
If teller ready THEN

queuelength--
Time+7: teller ready

UNTIL list is empty.

Henk Muller 21– v COMS30201 October 11, 2001

Implementation can be painful
Writing it with a single loop becomes a pain when there are more
than two components.

�Requires a concurrency model

� A central process manages the event list.

� Processes can add events to the event list.

� Events are executed and scheduled by passing them to a process.

Virtual clock

Processor Memory

I need to wait I need to wait
Go Go

Henk Muller 22 COMS30201 October 11, 2001

The Virtual Clock

The virtual clock maintains the current time, event list and acts as the
scheduler.

� Each process sends a request to the clock to be stopped for n
timeunits.

� The virtual clock will send a message ‘Ok, you have waited long
enough’ when n has passed.

� The virtual clock schedules the other processes.
– The blobs are “Objects”.
– The square thing is a scheduler
– The arrows indicate communication between objects and the

scheduler.

Henk Muller 23 COMS30201 October 11, 2001

Discrete Event Simulators in C
typedef struct event { struct event *next, int time ;

process_context *c ; } event ;
static event *hea d = 0 ;

int main(void) {
event *tmp ;
while(head != NULL) {

tmp = head ;
now = tmp->time ;
head = head->next ;
(*tmp->c->func)(tmp->c) ;
free(tmp) ;

}
}

Henk Muller 24 COMS30201 October 11, 2001

Conclusions
Advantage:

� You don’t have to physically build the system
Before simulating:

� Think before you start:
– What is the purpose (functionality? Timings?)
– Can’t you solve it analytically?
– What level of detail is important?
– What is the expected run time (number of computations)
– What is the accuracy?

� All choices that must be made explicitly before making a simulator.

� Balance
– Whole system is accurate as worst component

)Makes no sense to have some very accurate parts (unless to
convince yourself of the functionality)

Henk Muller 25 COMS30201 October 11, 2001

	1, Building simulators
	2, Simulation: an example
	3, Simulation: benefits
	4, Precision of Simulation?
	5, Level of Detail
	6, Low level
	7, Medium level
	8, High level
	9, Simulation models
	10, Functional Simulators
	11, Implementing a Functional Simulator
	12, Continuous time
	13, Continuous time example, a chip
	14, Implementing continuous time
	15, Implementing Continuous Time
	16, Constant time steps
	17, Implementing Constant Time
	18, Discrete time
	19, Virtual Time
	20, Implementing Discrete simulators
	21, Event List: Time 11:12, Queue: 0-- i
	21, Event List: Time 11:19, Queue: 1-- ii
	21, Event List: Time 11:21, Queue: 0-- iii
	21, Event List: Time 11:23, Queue: 1-- iv
	21, Event List: Time 11:26, Queue: 2-- v
	22, Implementation can be painful
	23, The Virtual Clock
	24, Discrete Event Simulators in C
	25, Conclusions

